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Visual Abstract

TOPOLOGICAL DATA ANALYSIS (TDA) IN FUNCTIONAL CONNECTOMES
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Significance Statement

Topological data analysis (TDA) investigates the topology of interacting nodes. It may model the connec-
tomes as a topological process instead of a static graph, exploring the transition of all nodes being isolated
to binding together, as a function of the connectivity threshold. Here, we explored three parameters to char-
acterize the algebraic topology of individual connectomes using four different brain atlases, further explor-
ing the subnetwork levels. Our findings showed that the area under the curve (AUC) robustly differentiates
children with attention-deficit/hyperactivity disorder (ADHD) and typically developing children (TDC), sug-
gesting decreased functional segregation, with the greatest effects on the frontal lobe and the default-mode
network. Overall, these results support the use of the proposed methods to robustly explore topological dif-
\ferences in the brain connectome. /

Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder characterized by difficulty to control
the own behavior. Neuroimaging studies have related ADHD with the interplay of fronto-parietal attention sys-
tems with the default mode network (DMN; Castellanos and Aoki, 2016). However, some results have been in-
consistent, potentially due to methodological differences in the analytical strategies when defining the brain
functional network, i.e., the functional connectivity threshold and/or the brain parcellation scheme. Here, we
make use of topological data analysis (TDA) to explore the brain connectome as a function of the filtration
value (i.e., the connectivity threshold), instead of using a static connectivity threshold. Specifically, we charac-
terized the transition from all nodes being isolated to being connected into a single component as a function
of the filtration value. We explored the utility of such a method to identify differences between 81 children with
ADHD (45 male, age: 7.26-17.61 years old) and 96 typically developing children (TDC; 59 male, age: 7.17-
17.96 years old), using a public dataset of resting state (rs)fMRI in human subjects. Results were highly con-
gruent when using four different brain segmentations (atlases), and exhibited significant differences for the
brain topology of children with ADHD, both at the whole-brain network and the functional subnetwork levels,
particularly involving the frontal lobe and the DMN. Therefore, this is a solid approach that complements con-
nectomics-related methods and may contribute to identify the neurophysio-pathology of ADHD.

Key words: attention-deficit/hyperactivity disorder; functional connectivity; persistent homology; resting-state

fMRI; topological data analysis

Introduction

Current neuroimaging technology allows the exploration
of the human brain as a network of structurally and/or func-
tionally connected constituents, i.e., voxels or regions of in-
terest. In particular, functional connectivity is defined as
the synchrony of neuronal activity patterns of anatomically
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separated brain regions (Aertsen et al., 1989; Friston et al.,
1993) and many studies have explored this property to pro-
vide new insights about the functional organization of the
brain in health and disease (van den Heuvel and Pol, 2010;
Lee et al., 2013; Lord et al., 2017), providing the means to
study the neurofunctional alterations of neurologic and
psychiatric disorders from a systems perspective.

One of the most commonly used frameworks to explore
the functional brain network is graph theory, which pro-
vides a theoretical basis to describe and characterize
complex networks (Rubinov and Sporns, 2010; Fornito et
al., 2013). In this framework, the brain network is modeled
as a graph composed of a set of nodes (mainly voxels or
larger regions) and their connections (in this case, the
functional connectivity between pairs of elements). In
practice, this is constructed using a matrix where each
entry is a measure of connectivity between two nodes and
then a threshold is applied to construct an adjacency ma-
trix which represents the non-spurious connections.
However, there is no general criterion to assign an appro-
priate set of regions of interest (ROIs), nor a defined thresh-
old, which may result in divergent results among studies.
For instance, several studies exploring the functional
connectome of children diagnosed with attention-deficit/
hyperactivity disorder (ADHD), have reported different
results. Specifically, some studies have found higher
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Figure 1. The Betti-0 curve. A, Two-dimensional toy example:
a set of 15 nodes, four filtration values ¢, represented as the
circle diameter and their corresponding Betti-0 (Bo). B, Betti-0
curve for a hypothetical brain network; each point in the curve
represents the By for each filtration value. In both cases, at ¢ =
0 the number of components is equal to the number of nodes,
n. As the filtration value increases, the number of components
reduces, and eventually will reach a single one containing all
nodes. Brain views generated with brain-net (Xia et al., 2013), r
stands for Pearson’s correlation.

network segregation and lower integration in ADHD pa-
tients compared with controls (Wang et al., 2009b; Lin et
al., 2014), while others found no differences when explor-
ing the same properties (Cocchi et al.,, 2012; Sato et al,,
2013). Such divergent results may be partially explained by
the variability in methods, including threshold and ROls se-
lection (Konrad and Eickhoff, 2010; Castellanos and Aoki,
2016), as well as the variable robustness of some of the
most used approaches (Somandepalli et al., 2015).
Recently, topological data analysis (TDA), has been
adopted in neuroimaging as a tool to quantify and visual-
ize the evolution of the brain network at different thresh-
olds (Lee et al., 2011, 2017; Stolz et al., 2018; Sizemore et
al., 2018, 2019; Expert et al., 2019; Santos et al., 2019).
The main objective of this method is to model the network
as a topological space instead of a graph (Edelsbrunner
et al., 2000; Zomorodian and Carlsson, 2005), allowing
the assessment of the functional connectivity matrix as a
topological process instead of a static threshold-depend-
ent representation of the network. One of the possible ap-
plications is to characterize how the isolated nodes
gradually bind together into larger components (sets of
connected nodes) as a function of the filtration value (con-
nectivity threshold), until a single component is recruited.
For this purpose, the number of components at a given fil-
tration value is termed the Betti-O (see Materials and
Methods). This process is summarized in a so called
Betti-0 curve (Fig. 1), which has been shown to differenti-
ate children with developmental disorders from controls
using data from positron emission tomography (PET) and
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defining the brain network at the group-level (Lee et al.,
2011, 2012). However, it has been typically applied to
brain networks defined at the group level, i.e., exploring
the covariance of concatenated physiological or structural
data from groups of subjects, instead of exploring the in-
dividual characteristics of the network and comparing
them between groups. Furthermore, the consistency of
the method across different brain segmentation schemes
has not been explored.

In this work, TDA was applied to explore individual brain
networks based on the resting state functional MRI
(rsfMRI) of children diagnosed with ADHD and typically
developing children (TDC), obtained from the publicly
available ADHD-200 database (HD-200 Consortium,
2012). First, the consistency of this methodology was ex-
plored when using four different brain segmentation
schemes (atlases), and then group differences were identi-
fied between ADHD and TDC groups, at the whole-brain
and subnetwork levels. ADHD is a developmental disorder
characterized by a lack of control of appropriate behavior
and a difficulty to maintain attention (WHO, 1992; APA,
1994). Current theories propose the potential alteration of
multiple functional networks and their interaction, including
the default, cognitive control (fronto-parietal), dorsal and
ventral attention, and salience networks (Sonuga-Barke
and Castellanos, 2007; Castellanos and Aoki, 2016).
Consequently, it was expected that the proposed method-
ology would reveal significant differences between groups
among the components of these functional networks.

Materials and Methods

Sample

Imaging and phenotypic data from 263 participants cor-
responding to the New York University Child Study
Center dataset were obtained from the ADHD-200 data-
base (https://fcon_1000.projects.nitrc.org/indi/adhd200/).
Subjects reported with a secondary diagnosis and/or not
medication-naive status were discarded. Only those with
good imaging quality and complete phenotypic information
were used for subsequent analysis, resulting in a total of
182 children. Study protocols were approved by the New
York University Institutional Review Boards, and after an
explanation of study procedures a written informed con-
sent from parents and assent from children were required.

Pediatric diagnosis was based on the Schedule of
Affective Disorders and Schizophrenia for Children Present
and Lifetime Version (KSADS-PL) and the Conners’ Parent
Rating Scale-Revised, Long version (CPRS-LV). Moreover,
IQ was measured with the Wechsler Abbreviated Scale of
Intelligence (WASI). Inclusion in the ADHD group was
based on the parent and child responses to KSADS-PL
and obtaining a t-score greater or equal than 65 in any of
the ADHD related indices of the CPRS-LV. TDC had ADHD
summarized t-scores below 60, and lack of any DSM-IV
axis-| disorders. Exclusion criteria were an 1Q below 80 or
any chronic medical conditions. However, phenotypic data
of three ADHD datasets showed full intelligence scores
below 80, while two TDC showed t scores >60 in the
ADHD summary scale. Data from those subjects were dis-
carded for further analysis, resulting in a final sample of 81
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Table 1: Phenotypic information by diagnostic group

TDC ADHD
Frequency 96 81
Sex (F/M) 51/45 22/59 OR=3.019
Age (years old) 12.26 (=3.07) 10.5 (+2.48) d=0.63
ADHD index 44.97 (=4.75) 72.78 (=8.18) d=-4.26
1Q 111.27 (=13.92) 108.22 (+13.69) d=0.22
Motion (mm) 0.067 (=0.054) 0.072 (=0.041) d=-0.11

Motion stands for the average RMS of the relative head motion within the
scanner (computed with FSL’s MCFLIRT). Grouped effect sizes by odds ratio
(OR) and Cohen’s d ().

ADHD children (average age *= SD: 10.5 = 2.48 years old)
and 96 TDC (12.26 = 3.07 years old; Table 1).

Imaging acquisition

Magnetic resonance images were acquired with a
Siemens Magnetom Allegra 3T scanner (Siemens Medical
Solutions). Whole-brain fMRI volume images were ob-
tained using a T2"-weighted echo planar imaging inter-
leaved sequence (TR/TE=2000/15ms, flip angle=90,
voxel size 3 x 3 x 4 mm?>, FOV =240 x 192 mm?) with a
scan duration of 6 min. Participants were instructed to re-
main still, close their eyes, think of nothing systematically
and not fall asleep. In order to obtain an anatomic refer-
ence, high-resolution structural T1-weighted magnetiza-
tion prepared rapid acquisition gradient echo (MPRAGE)
images were acquired (TR/TE =2530/3.25 ms, flip angle =
7°, voxel size 1.3 x 1.0 x 1.3 mm?, FOV =256 x 256 mm?).

Preprocessing

Preprocessing was implemented using FMRIB'’s Software
Libraries (FSL v.5.0.6; Jenkinson et al., 2012). Steps in-
cluded removing the first four volumes, slice timing, head
motion correction, brain extraction, regression of confound-
ing variables, bandpass temporal filtering (0.01-0.08 Hz),
and spatial normalization. Given that psychiatric and pediat-
ric populations usually show higher in scanner motion than
controls and adults (Satterthwaite et al., 2012), a rigorous
confounding regression strategy was implemented to mini-
mize head motion artifacts. Specifically, several variables
were regressed out from the functional data, including the
six rigid-body motion parameters, the average signal from
both white matter (WM) and CSF, the derivative of these
eight parameters and the square of these sixteen variables
(Gracia-Tabuenca et al., 2018). In addition, to minimize the
impact of physiological noise, five principal components of
the signal from WM and CSF were also included as con-
founding variables (Behzadi et al., 2007; Chai et al., 2012).
Furthermore, those volumes with a root mean square (RMS)
of relative head motion >0.25 mm were also included as
confounds (Satterthwaite et al., 2013). Subjects with an av-
erage RMS of relative head motion higher than 0.55 mm or
<4min of non-motion-affected data, were discarded.
Eventually, each fMRI volume was registered to its corre-
sponding T1 image with a rigid-body transformation, fol-
lowed by an affine and nonlinear registrationto a2 x 2 x 2
mm? children-specific template, the 4.5-18.5years old
NIHPD atlas (Fonov et al., 2011).
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Functional connectomes

For every dataset, four functional connectomes (con-
nectivity matrices) were computed based on different
brain atlases: AAL (Tzourio-Mazoyer et al., 2002), P264
(Power et al., 2011), CC200, and CC400 (Craddock et al.,
2012). All of them include cerebrum and cerebellum. The
first one consists of a segmentation of 116 anatomic re-
gions, the second one is a set of 264 spherical ROIs with
high reliability in both task and resting fMRI large data-
sets, while the last two are segmented based on function-
al connectivity homogeneity (with 190 and 351 nodes,
respectively).

For each subject and atlas, the average fMRI signal of
every defined region was extracted and then the function-
al connectome was computed as the Pearson’s cross-
correlation between all possible pairs of regions. The reli-
ability of the explored TDA variables along the atlases
was assessed by the Kendall's concordance coefficient
(KCC).

TDA

Typically, the brain connectome is modeled as a graph
(G), which is a collection of nodes (V) and edges (E).
Nodes usually represent regions of interest, while edges
represent structural or functional connections between
those nodes. Nevertheless, this graph can be represented
as a topological space as well, in particular, the Rips com-
plex, denoted by Rips(F,¢), where F represent the nodes
(same as V) and &, the filtration value, which is a positive
number that states if two nodes in F are connected (if their
distance is lower than &). Algebraic properties extracted
from this topological space are called Betti numbers, par-
ticularly, the Betti-0 number (Bg) accounts for the number
of components, i.e., the number of isolated nodes or sets
of nodes connected by a sequence of edges; Betti-1
number refers to the number of cavities in the two-dimen-
sional space between nodes, and so on (for extensive re-
view on TDA, see Edelsbrunner et al., 2000; Sizemore et
al., 2019). In this work, we focus exclusively on By. If we
start with a filtration value ¢ = 0, all nodes are discon-
nected, and the number of components equals the num-
ber of nodes. When & gradually increases, some isolated
nodes will connect with others and the number of compo-
nents decreases. Therefore, By will diminish as the nodes
gradually connect to each other as ¢ increases. It is possi-
ble to identify the filtration values for which there is a
change in By, until there is only one large component con-
taining all the nodes. This process is summarized in the
so-called Bg curve (Fig. 1).

Here, the distance between nodes is defined as in Lee
et al. (2012), i.e., d(¢, x)=1 — r(é, x;), where r is the
Pearson’s correlation between the pair of nodes ¢ and x;.
The By curves are computed with the TDA package in R
(https://cran.r-project.org/web/packages/TDA/index.
html), and characterized in terms of the area under the
curve (AUC), slope, and kurtosis. The AUC accounts for
the overall transition from all nodes being isolated to
being connected into a single component, with smaller
areas suggesting that By decreases with smaller filtration
values. The slope accounts for the rate of change, being
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Kendall's Concordance Coefficient (KCC) between atlases
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Figure 2. KCC between brain parcellations for the explored properties of the By curves: AUC, slope and kurtosis. KCC value is de-
picted in yellow-red, with p(KCC > 0.59) < 0.05, given two raters and 176 degrees of freedom.

all negative, lower values mean a faster transition to a sin-
gle component. Finally, the kurtosis accounts for how
“tailed” the distribution is with respect to the average
value, with higher values meaning faster transition to a
single component.

Null model

In order to prove that the estimated parameters of the
Bo curves are features of the brain topology, observed
values were compared with those generated from a ran-
dom distribution. A weighted null distribution was calcu-
lated based on the rewiring of the original connectivity
matrices (Giusti et al., 2015). Specifically, 1000 permuta-
tions were run for each subject and parcellation.

Diagnostic group inferences

Logistic regression was applied to identify significant
associations between diagnostic group and the Bj fea-
tures, including sex, age, and head motion as covariates
(Eqg. 1). This approach allows the calculation of the effect
sizes of the orthogonal odds ratio (OR) for each term of
the equation. All dimensional variables were standardized
to z scores to be included in the model. This strategy was
applied for each of the four brain atlases.

group ~AUC + kurtosis + slope + sex + age

+ motion
()

Equation 1 expresses logistic regression model accord-
ing to Wilkinson-Rogers notation (Wilkinson and Rogers,
1973); “motion” accounts for average RMS relative head
motion (mm).

In addition, the same logistic regression model (Eq. 1)
was implemented at intranetwork and internetwork levels,
i.e., considering the seven lobes of the AAL atlas, and the
thirteen functional networks defined in P264. For exam-
ple, logistic regression was applied for the subset of 28
frontal lobe nodes (based on AAL atlas), referred to as the
Frontal intranetwork. Then, it was applied for the frontal-
parietal internetwork subset (28 + 14 nodes), and so on.
Given the 28 and 91 possible combinations, for the AAL
and P264, respectively, significance was set to p < 0.05,
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corrected for a non-parametric family-wise error (FWE)
approach based on clusters of edges (Network Based
Statistics; Zalesky et al., 2010), in which a p <0.05 (bi-
sided) was set for individual edges, and a null distribution
of clusters was computed with 10,000 permutations.

Code accessibility

The code/software described in the paper is freely avail-
able online at https://github.com/BrainMapINB/TDA _
ADHD. Also, the code is available as Extended Data 1.
Present results were computed with an Intel Core i7-4790
CPU @ 3.60 GHz x 8 with Ubuntu 18.04.3 LTS 64-bit.

Results

Agreement across brain atlases

The three explored properties of the By curves showed
a generalized sample agreement along the four brain par-
cellations. Significant agreement was found considering
every atlas and each feature: area (KCC=0.87; x°176 =
609; p =4.67e-49), slope (KCC=0.68; x°i76 = 477; p=
1.33e-29), and kurtosis (KCC=0.44; x?176 = 307;
p =3.65e-09). Moreover, pairwise concordance coeffi-
cient was significant for every pair of atlases and every
TDA metric (Fig. 2).

Observed versus null model

When comparing observed results against those gener-
ated from the null model, B, curves from the randomized
data reached the single component faster than the origi-
nal data (Fig. 3). Regarding the explored parameters, the
AUC and slope of the null model never reach the observed
values, while permuted kurtosis are close to the original
values in almost half of the iterations (p = 0.4098).

Whole-brain topology

The area under the By curves showed significantly lower
odds for the ADHD group, no matter the brain atlas (AAL:
OR=0.622, p=0.014; CC200: OR=0.612, p =0.008; P264:
OR=0.611, p=0.013; CC400: OR=0.572, p =0.003), which
means that the ADHD group has smaller AUC compared
with the TDC group (Fig. 3). The area under the By curves
accounts for the overall transition from all nodes being iso-
lated to being connected into a single component, with
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Figure 3. By curves for each group and brain parcellation. Group average with 95% confidence interval (Cl) of the B curves. Forest
plot of OR with 95% CI for the logistic regression terms of AUC, kurtosis (K), and slope (S) are depicted for each brain atlas: AAL
(top left), CC200 (top right), P264 (bottom left), and CC400 (bottom right). Gray dashed line stands for OR equal to one.

smaller areas when By decreases faster as the filtration
value increases. In other words, less AUC implies lower
number of components, i.e., less segregation, which should
be mediated by increased connectivity in the edges media-
ting the integration of components. In order to explore such
edges, the proportion of subjects showing connectivity for
each edge at some filtration values was compared between
groups (Fig. 4). These tests showed widespread frontal
short-range and cortical long-range edges being more
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@ TEMPORAL

@ LIMBIC @ PARIETAL
CEREBELLUM

€=0.5

€=0.75

frequently present in the ADHD group (p < 0.01, uncor-
rected; Fig. 4). No group differences were found for the
slope nor the kurtosis, thus only the AUC was sensitive to
differentiate both groups.

Intranetwork and internetwork inference

Logistic regressions were performed in subsets of
nodes as well, corresponding to the nodes of a single
lobe or functional network (intranetwork) or the nodes of

Proportion

Difference
ADHD>TDC i | Wil TDC>ADHD

-02 0 02

Figure 4. Edges with differences in the proportion of subjects between groups at ¢ = 0.35 (A) and ¢ = 0.5, 0.75, and 1 (B). Nodes
from each lobe (AAL atlas) are represented with different colors in the chord diagrams. Only edges with a proportion difference at
p <0.01 (uncorrected) are depicted. For ¢ = 0.35 the edges are represented in the brain using brain-net (Xia et al., 2013). R stands

for the right side of the brain.
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Figure 5. Group differences for anatomic and functional subnetworks. Pairwise plot and chord diagrams (Gu et al., 2014) of signifi-
cant differences for the area under the By curves (prpwe < 0.05) between groups. Anatomical lobes (top) are based on AAL parcella-
tion and functional networks (bottom) are based on P264 parcellation. AUD, auditory; CBL, cerebellar; CinOp, cingulo-opercular;
DMN, default mode; DAN, dorsal attention: FPN, fronto-parietal; MEM, memory retrieval; SAL, salience; SMN.H, sensory/somato-
motor hand; SMN.H, sensory/somatomotor mouth; SUB, subcortical; VAN, ventral attention; VIS, visual.

two networks (internetwork), according to the lobular and
the functional parcellation of the AAL and P264 atlases,
respectively. Resulting patterns of the AUC were signifi-
cant after FWE correction, ppwe = 0.0026 and ppwe =
0.0147, respectively. Anatomical subsets included the in-
tranetwork and every possible internetwork subset includ-
ing the frontal lobe plus the temporal-subcortical
interaction, and in every case the ADHD group showed a
lower area compared with the TDC (Fig. 5). These results
demonstrate a widespread decreased segregation of the
brain network in the ADHD group, particularly involving
the frontal lobe. When considering the functional systems
in the P264 atlas, notably, all the subsets of nodes that in-
cluded the default mode network (DMN) also showed
smaller areas for the ADHD group, but other intranetwork
and internetwork subsets showed similar patterns (Fig. 5).

Discussion

In this work, methods from TDA were applied to explore
the topology of the brain network as a function of the fil-
tration value (i.e., the connectivity threshold). Resulting Bg
curves were characterized in terms of three parameters:
AUC, slope, and kurtosis; and compared between ADHD
and TDC. The application of this model to a pediatric

May/June 2020, 7(3) ENEURO.0543-19.2020

sample showed that the AUC was significantly lower for
the ADHD group, both at the whole-brain and at the sub-
network level. These results showed decreased functional
segregation in the ADHD group, mainly involving the fron-
tal lobe and the DMN.

The By curves were characterized in terms of three pa-
rameters, the AUC, slope, and kurtosis. Pairwise agree-
ment between brain parcellations was high for the AUC
(KCC range: 0.84-0.97) and the slope (KCC range: 0.69-
0.9), and medium to low for the kurtosis (KCC range:
0.59-0.66). These results suggest that this methodology
is consistent among different parcellation schemes, espe-
cially for the area under the Bg curve. In addition, consid-
ering that the Bg features do not depend on a particular
connectivity threshold, but instead explore all the filtra-
tion values with a change in the topology of the network,
this methodology contributes to provide a complete pic-
ture of the brain network, overcoming one of the main lim-
itations of other approaches. Taken together, these are
potentially important advantages that may complement
other methods applied to brain networks, such as graph
theory, which has been shown to be highly dependent on
the brain parcellation scheme (Wang et al., 2009a; Chen
et al., 2018; Doucet et al., 2019), and on the selection of a
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connectivity threshold or connectivity cost (van den
Heuvel et al., 2008; Fornito et al.,, 2010; Tomasi and
Volkow, 2010; Termenon et al., 2016; Gracia-Tabuenca et
al., 2018).

The area under the By curve was significantly lower for
the ADHD group, both at the whole-brain network and at
the subnetwork level, being strikingly significant for the in-
teractions involving the frontal lobe and the DMN. As
mentioned above, the AUC accounts for the overall transi-
tion from all nodes being isolated to being connected into
a single component, with smaller areas suggesting that
Bo, the number of components, decreases faster as the
filtration value increases. Such differences in By for a
given filtration value are mediated by edges that bind
together previously split components, which results from
increased connectivity in some edges mediating the inte-
gration into larger components. Taken together, the re-
sults here presented can be interpreted as higher
functional connectivity within the connectome and specif-
ic subnetworks in the ADHD group, especially those in-
volving the frontal lobe and the DMN. Previous evidence
has also suggested increased functional connectivity in a
variety of regions of the frontal lobe in ADHD (Tomasi and
Volkow, 2012; Hoekzema et al., 2014; Mostert et al.,
2016), as well as fronto-occipital (Cocchi et al., 2012) and
fronto-subcortical connections (Cocchi et al., 2012;
Tomasi and Volkow, 2012), particularly those associated
with reward and motivation (Tomasi and Volkow, 2012).
Our results showed a similarly widespread pattern in sev-
eral functional subnetworks, mainly the DMN, but also at-
tention, salience, fronto-parietal, and auditory nodes,
among others (Fig. 5). These results provide the basis to
infer the potential functional systems being affected in
ADHD, being consistent with the current theories involv-
ing such networks (Castellanos and Aoki, 2016), particu-
larly with the DMN interference hypothesis, which is
based on the findings of altered interactions between the
DMN and networks involved in top-down executive con-
trol (Fox et al., 2005; Fox and Raichle, 2007; Kelly et al.,
2008; Elton et al.,, 2014; Hoekzema et al., 2014;
Castellanos and Aoki, 2016; Bos et al., 2017; Qian et al.,
2019).

Previous studies have reported a myriad of differences
in network properties between ADHD and TDC partici-
pants. At the whole-brain level, higher functional segrega-
tion and lower functional integration in ADHD subjects
compared with controls have been reported (Wang et al.,
2009b; Lin et al., 2014), although other groups did not re-
produce those results (Cocchi et al., 2012; Sato et al.,
2013). Since the decreased area under the By curves
could be interpreted as higher integration and lower seg-
regation of isolated components, our results seem to be
contradictory to the aforementioned ones. Nevertheless,
the previous studies explored connectivity costs higher
than 10%, which according to Lin et al. (2014) would cor-
respond to filtration values higher than & = 0.5, when
most of the subjects actually exhibit a single component
(Fig. 3). Therefore, these results are actually complemen-
tary, given that By curves consider a wider range of con-
nectivity thresholds, rarely explored with graph theory.
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Indeed, when exploring the edge-wise proportions be-
tween groups at different connectivity thresholds (Fig. 4),
the ADHD group showed consistently widespread in-
creases compared with the TDC. However, at lower con-
nectivity thresholds (higher filtration values), the ADHD
group showed decreased proportion of edges in several
interactions, mainly including the frontal, temporal, sub-
cortical, and cerebellar regions, which seem consistent
with previous reports of decreased connectivity in ADHD
(Tomasi and Volkow, 2012; Di Martino et al., 2013; Elton
et al., 2014). These results evidence that the static repre-
sentation of the network changes as a function of the con-
nectivity threshold, therefore an approach that takes into
account wider threshold ranges should provide better in-
sights into the neurophysiological substrate of ADHD.

As far as we are concerned, only two previous studies
have explored By in ADHD brain networks (Lee et al.,
2011, 2012), using fludeoxyglucose PET (FDG-PET) and
interregion covariation at the sample level, qualitatively re-
porting higher number of components for the ADHD
group compared with the TDC. Such findings seem to be
opposite to the results here presented; however, meth-
odological differences prevent direct comparisons be-
tween results. First, time-scales are significantly different,
with the FDG-PET scans reflecting the glucose uptake oc-
curring during several minutes; in contrast, rsfMRI reflects
variations in blood oxygenation during tens of seconds.
Furthermore, FDG-PET connectivity matrices reflect inter-
region covariation of (long-term) glucose metabolism
across subjects, while rsfMRI connectivity matrices reflect
interregion covariation (within seconds) within the same
subject and later compared between groups. Overall,
both methodologies potentially reflect complementary as-
pects of the functional connectomes in ADHD.

Conclusion

In summary, the present study showed a robust and in-
formative implementation of TDA in functional connec-
tomics. The results exhibited significant differences for
the brain topology of children with ADHD, both at the
whole-brain network and at the functional subnetwork
level, particularly involving the frontal lobe and the DMN.
Therefore, this approach may contribute to identifying the
physio-pathology of neurodevelopmental disorders, com-
plementing other connectomics methods by exploring a
larger connectivity range and reducing the bias of select-
ing a fixed threshold.

References

Aertsen A, Gerstein G, Habib M, Palm G (1989) Dynamics of neuronal
firing correlation: modulation of” effective connectivity. J
Neurophysiol 61:900-917.

APA (1994) Diagnostic and statistical manual of mental diseases
(DSM-1V). Washington, DC: APA.

Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based
noise correction method (compcor) for bold and perfusion based
fMRI. Neuroimage 37:90-101.

Bos DJ, Oranje B, Achterberg M, Vlaskamp C, Ambrosino S, de Reus
MA, van den Heuvel MP, Rombouts SA, Durston S (2017)
Structural and functional connectivity in children and adolescents

eNeuro.org


http://dx.doi.org/10.1152/jn.1989.61.5.900
https://www.ncbi.nlm.nih.gov/pubmed/2723733
http://dx.doi.org/10.1016/j.neuroimage.2007.04.042
https://www.ncbi.nlm.nih.gov/pubmed/17560126

eMeuro

with and without attention deficit/hyperactivity disorder. J Child
Psychol Psychiatry 58:810-818.

Castellanos FX, Aoki Y (2016) Intrinsic functional connectivity in at-
tention-deficit/hyperactivity disorder: a science in development.
Biol Psychiatry Cogn Neurosci Neuroimaging 1:253-261.

Chai XJ, Castafién AN, Ongir D, Whitfield-Gabrieli S (2012)
Anticorrelations in resting state networks with-out global signal re-
gression. Neuroimage 59:1420-1428.

Chen X, Liao X, Dai Z, Lin Q, Wang Z, Li K, He Y (2018) Topological
analyses of functional connectomics: a crucial role of global signal
removal, brain parcellation, and null models. Hum Brain Mapp
39:4545-4564.

Cocchi L, Bramati IE, Zalesky A, Furukawa E, Fontenelle LF, Moll J,
Tripp G, Mattos P (2012) Altered functional brain connectivity in a
non-clinical sample of young adults with attention-deficit/hyperac-
tivity disorder. J Neurosci 32:17753-17761.

Craddock RC, James GA, Holtzheimer PE 3rd, Hu XP, Mayberg HS
(2012) A whole brain fMRI atlas generated via spatially constrained
spectral clustering. Hum Brain Mapp 33:1914-1928.

Di Martino A, Zuo X-N, Kelly C, Grzadzinski R, Mennes M, Schvarcz
A, Rodman J, Lord C, Castellanos FX, Milham MP (2013) Shared
and distinct intrinsic functional network centrality in autism and at-
tention-deficit/hyperactivity disorder. Biol Psychiatry 74:623-632.

Doucet GE, Lee WH, Frangou S (2019) Evaluation of the spatial vari-
ability in the major resting-state networks across human brain
functional atlases. Hum Brain Mapp 40:4577-4587.

Edelsbrunner H, Letscher D, Zomorodian A (2000) Topological per-
sistence and simplification. In: Proceedings 41st annual sympo-
sium on foundations of computer science, pp 454-463. Redondo
Beach, CA: IEEE.

Elton A, Alcauter S, Gao W (2014) Network connectivity abnormality
profile supports a categorical-dimensional hybrid model of ADHD.
Hum Brain Mapp 35:4531-4543.

Expert P, Lord L-D, Kringelbach ML, Petri G (2019) Editorial: topolog-
ical neuroscience. Netw Neurosci 3:653-655.

Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL;
Brain Development Cooperative Group (2011) Unbiased average
age-appropriate atlases for pediatric studies. Neuroimage 54:313-
327.

Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in
graph analytic studies of human resting-state FMRI data. Front
Syst Neurosci 4:22.

Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the
human connectome: promise, progress, and pitfalls. Neuroimage
80:426-444.

Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat Rev
Neurosci 8:700-711.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle
ME (2005) The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc Natl Acad Sci USA
102:9673-9678.

Friston K, Frith C, Liddle P, Frackowiak R (1993) Functional connec-
tivity: the principal-component analysis of large (pet) data sets. J
Cereb Blood Flow Metab 13:5-14.

Giusti C, Pastalkova E, Curto C, Itskov V (2015) Clique topology re-
veals intrinsic geometric structure in neural correlations. Proc Natl
Acad Sci USA 112:13455-13460.

Gracia-Tabuenca Z, Moreno MB, Barrios FA, Alcauter S (2018)
Hemispheric asymmetry and homotopy of resting state functional
connectivity correlate with visuospatial abilities in school-age chil-
dren. Neuroimage 174:441-448.

Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements
and enhances circular visualization in R. Bioinformatics 30:2811—
2812.

HD-200 Consortium (2012) The ADHD-200 consortium: a model to
advance the translational potential of neuroimaging in clinical neu-
roscience. Front Syst Neurosci 6:62.

Hoekzema E, Carmona S, Ramos-Quiroga JA, Richarte Fernandez
V, Bosch R, Soliva JC, Rovira M, Bulbena A, Tobefia A, Casas M,

May/June 2020, 7(3) ENEURO.0543-19.2020

Research Article: New Research 9 of 10

Vilarroya O (2014) An independent components and functional
connectivity analysis of resting state fmri data points to neural net-
work dysregulation in adult ADHD. Hum Brain Mapp 35:1261-
1272.

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM
(2012) Fsl. Neuroimage 62:782-790.

Kelly AC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008)
Competition between functional brain networks mediates behav-
ioral variability. Neuroimage 39:527-537.

Konrad K, Eickhoff SB (2010) Is the ADHD brain wired differently? a
review on structural and functional connectivity in attention deficit
hyperactivity disorder. Hum Brain Mapp 31:904-916.

Lee H, Chung MK, Kang H, Kim B-N, Lee DS (2011) Discriminative
persistent homology of brain network. In: 2011 IEEE international
symposium on biomedical imaging: from nano to macro, pp 841-
844. Chicago, IL: IEEE.

Lee H, Kang H, Chung MK, Kim BN, Lee DS (2012) Persistent brain
network homology from the perspective of dendrogram. |IEEE
Trans Med Imaging 31:2267-2277.

Lee H, Kang H, Chung MK, Lim S, Kim B-N, Lee DS (2017)
Integrated multimodal network approach to PET and MRI based
on multidimensional persistent homology. Hum Brain Mapp
38:1387-1402.

Lee MH, Smyser CD, Shimony JS (2013) Resting-state fMRI: a re-
view of methods and clinical applications. AUONR Am J Neuroradiol
34:1866-1872.

Lin P, Sun J, Yu G, Wu Y, Yang Y, Liang M, Liu X (2014) Global and
local brain network reorganization in attention-deficit/hyperactivity
disorder. Brain Imaging Behav 8:558-569.

Lord LD, Stevner AB, Deco G, Kringelbach ML (2017) Understanding
principles of integration and segregation using whole-brain com-
putational connectomics: implications for neuropsychiatric disor-
ders. Philos Trans A Math Phys Eng Sci 375:20160283.

Mostert JC, Shumskaya E, Mennes M, Onnink AMH, Hoogman M,
Kan CC, Vasquez AA, Buitelaar J, Franke B, Norris DG (2016)
Characterising resting-state functional connectivity in a large sam-
ple of adults with ADHD. Prog Neuropsychopharmacol Biol
Psychiatry 67:82-91.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA,
Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, Petersen SE
(2011) Functional network organization of the human brain.
Neuron 72:665-678.

Qian X, Castellanos FX, Uddin LQ, Loo BRY, Liu S, Koh HL, Poh
XWW, Fung D, Guan C, Lee T-S, Lim CG, Zhou J (2019) Large-
scale brain functional network topology disruptions underlie symp-
tom heterogeneity in children with attention-deficit/hyperactivity
disorder. Neuroimage Clin 21:101600.

Rubinov M, Sporns O (2010) Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52:1059-
1069.

Santos FA, Raposo EP, Coutinho-Filho MD, Copelli M, Stam CJ,
Douw L (2019) Topological phase transitions in functional brain
networks. Phys Rev E 100:032414.

Sato JR, Takahashi DY, Hoexter MQ, Massirer KB, Fujita A (2013)
Measuring network’s entropy in ADHD: a new approach to investi-
gate neuropsychiatric disorders. Neuroimage 77:44-51.

Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA,
Hakonarson H, Gur RC, Gur RE (2012) Impact of in-scanner head
motion on multiple measures of functional connectivity: relevance
for studies of neurodevelopment in youth. Neuroimage 60:623-
632.

Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J,
Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH
(2013) An improved framework for confound regression and filter-
ing for control of motion artifact in the preprocessing of resting-
state functional connectivity data. Neuroimage 64:240-256.

Sizemore AE, Giusti C, Kahn A, Vettel JM, Betzel RF, Bassett DS
(2018) Cligues and cavities in the human connectome. J Comput
Neurosci 44:115-145.

eNeuro.org


http://dx.doi.org/10.1111/jcpp.12712
https://www.ncbi.nlm.nih.gov/pubmed/28295280
http://dx.doi.org/10.1016/j.bpsc.2016.03.004
http://dx.doi.org/10.1016/j.neuroimage.2011.08.048
http://dx.doi.org/10.1002/hbm.24305
https://www.ncbi.nlm.nih.gov/pubmed/29999567
http://dx.doi.org/10.1523/JNEUROSCI.3272-12.2012
http://dx.doi.org/10.1002/hbm.21333
https://www.ncbi.nlm.nih.gov/pubmed/21769991
http://dx.doi.org/10.1016/j.biopsych.2013.02.011
https://www.ncbi.nlm.nih.gov/pubmed/23541632
http://dx.doi.org/10.1002/hbm.24722
http://dx.doi.org/10.1109/SFCS.2000.892133
http://dx.doi.org/10.1002/hbm.22492
https://www.ncbi.nlm.nih.gov/pubmed/24615988
http://dx.doi.org/10.1162/netn_e_00096
https://www.ncbi.nlm.nih.gov/pubmed/31410371
http://dx.doi.org/10.1016/j.neuroimage.2010.07.033
https://www.ncbi.nlm.nih.gov/pubmed/20656036
http://dx.doi.org/10.3389/fnsys.2010.00022
https://www.ncbi.nlm.nih.gov/pubmed/20592949
http://dx.doi.org/10.1016/j.neuroimage.2013.04.087
https://www.ncbi.nlm.nih.gov/pubmed/23643999
http://dx.doi.org/10.1038/nrn2201
https://www.ncbi.nlm.nih.gov/pubmed/17704812
http://dx.doi.org/10.1073/pnas.0504136102
http://dx.doi.org/10.1038/jcbfm.1993.4
https://www.ncbi.nlm.nih.gov/pubmed/8417010
http://dx.doi.org/10.1073/pnas.1506407112
http://dx.doi.org/10.1016/j.neuroimage.2018.03.051
https://www.ncbi.nlm.nih.gov/pubmed/29596979
http://dx.doi.org/10.1093/bioinformatics/btu393
http://dx.doi.org/10.3389/fnsys.2012.00062
http://dx.doi.org/10.1002/hbm.22250
https://www.ncbi.nlm.nih.gov/pubmed/23417778
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2007.08.008
https://www.ncbi.nlm.nih.gov/pubmed/17919929
http://dx.doi.org/10.1002/hbm.21058
https://www.ncbi.nlm.nih.gov/pubmed/20496381
http://dx.doi.org/10.1109/ISBI.2011.5872535
http://dx.doi.org/10.1109/TMI.2012.2219590
https://www.ncbi.nlm.nih.gov/pubmed/23008247
http://dx.doi.org/10.1002/hbm.23461
https://www.ncbi.nlm.nih.gov/pubmed/27859919
http://dx.doi.org/10.3174/ajnr.A3263
https://www.ncbi.nlm.nih.gov/pubmed/22936095
http://dx.doi.org/10.1007/s11682-013-9279-3
https://www.ncbi.nlm.nih.gov/pubmed/24338247
http://dx.doi.org/10.1098/rsta.2016.0283
http://dx.doi.org/10.1016/j.pnpbp.2016.01.011
http://dx.doi.org/10.1016/j.neuron.2011.09.006
https://www.ncbi.nlm.nih.gov/pubmed/22099467
http://dx.doi.org/10.1016/j.nicl.2018.11.010
https://www.ncbi.nlm.nih.gov/pubmed/30472167
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
https://www.ncbi.nlm.nih.gov/pubmed/19819337
http://dx.doi.org/10.1103/PhysRevE.100.032414
https://www.ncbi.nlm.nih.gov/pubmed/31640025
http://dx.doi.org/10.1016/j.neuroimage.2013.03.035
https://www.ncbi.nlm.nih.gov/pubmed/23571416
http://dx.doi.org/10.1016/j.neuroimage.2011.12.063
https://www.ncbi.nlm.nih.gov/pubmed/22233733
http://dx.doi.org/10.1016/j.neuroimage.2012.08.052
https://www.ncbi.nlm.nih.gov/pubmed/22926292
http://dx.doi.org/10.1007/s10827-017-0672-6
https://www.ncbi.nlm.nih.gov/pubmed/29143250

eMeuro

Sizemore AE, Phillips-Cremins JE, Ghrist R, Bassett DS (2019) The
importance of the whole: topological data analysis for the network
neuroscientist. Netw Neurosci 3:656-673.

Somandepalli K, Kelly C, Reiss PT, Zuo X-N, Craddock RC, Yan
C-G, Petkova E, Castellanos FX, Milham MP, Di Martino A (2015)
Short-term test-retest reliability of resting state fMRI metrics in
children with and without attention-deficit/hyperactivity disorder.
Dev Cogn Neurosci 15:83-93.

Sonuga-Barke EJ, Castellanos FX (2007) Spontaneous attentional
fluctuations in impaired states and pathological conditions: a neu-
robiological hypothesis. Neurosci Biobehav Rev 31:977-986.

Stolz BJ, Emerson T, Nahkuri S, Porter MA, Harrington HA (2018)
Topological data analysis of task-based fMRI data from experi-
ments on Schizophrenia. arXiv 1809.08504.

Termenon M, Jaillard A, Delon-Martin C, Achard S (2016) Reliability
of graph analysis of resting state fMRI using test-retest dataset
from the human connectome project. Neuroimage 142:172-187.

Tomasi D, Volkow ND (2010) Functional connectivity density map-
ping. Proc Natl Acad Sci USA 107:9885-9890.

Tomasi D, Volkow ND (2012) Abnormal functional connectivity in
children with attention- deficit/hyperactivity disorder. Biol
Psychiatry 71:443-450.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard
O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical
labeling of activations in spm using a macroscopic anatomical par-
cellation of the mni mri single-subject brain. Neuroimage 15:273-
289.

May/June 2020, 7(3) ENEURO.0543-19.2020

Research Article: New Research 10 of 10

van den Heuvel MP, Pol HEH (2010) Exploring the brain network: a
review on resting-state fMRI functional connectivity. Eur
Neuropsychopharmacol 20:519-534.

van den Heuvel MP, Stam CJ, Boersma M, Pol HH (2008) Small-
world and scale-free organization of voxel-based resting-state
functional connectivity in the human brain. Neuroimage 43:528-
539.

Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C,
He Y (2009a) Parcellation-dependent small-world brain functional
networks: a resting-state fMRI study. Hum Brain Mapp 30:1511-
1523.

Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y
(2009b) Altered small-world brain functional networks in children
with attention-deficit/hyperactivity disorder. Hum Brain Mapp
30:638-649.

Wilkinson GN, Rogers CE (1973) Symbolic description of factorial
models for analysis of variance. J R Stat Soc Ser C Appl Stat
22:392-399.

WHO (1992) The ICD-10 classification of mental and behavioural
disorders: clinical descriptions and diagnostic guidelines. Geneva:
World Health Organization.

Xia M, Wang J, He Y (2013) Brainnet viewer: a network visualization
tool for human brain connectomics. PLoS One 8:68910.

Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic:
identifying differences in brain networks. Neuroimage 53:1197-
1207.

Zomorodian A, Carlsson G (2005) Computing persistent homology.
Discrete Comput Geom 33:249-274.

eNeuro.org


http://dx.doi.org/10.1162/netn_a_00073
http://dx.doi.org/10.1016/j.dcn.2015.08.003
https://www.ncbi.nlm.nih.gov/pubmed/26365788
http://dx.doi.org/10.1016/j.neubiorev.2007.02.005
http://dx.doi.org/10.1016/j.neuroimage.2016.05.062
https://www.ncbi.nlm.nih.gov/pubmed/27282475
http://dx.doi.org/10.1073/pnas.1001414107
http://dx.doi.org/10.1016/j.biopsych.2011.11.003
http://dx.doi.org/10.1006/nimg.2001.0978
http://dx.doi.org/10.1016/j.euroneuro.2010.03.008
https://www.ncbi.nlm.nih.gov/pubmed/20471808
http://dx.doi.org/10.1016/j.neuroimage.2008.08.010
https://www.ncbi.nlm.nih.gov/pubmed/18786642
http://dx.doi.org/10.1002/hbm.20623
https://www.ncbi.nlm.nih.gov/pubmed/18649353
http://dx.doi.org/10.1002/hbm.20530
https://www.ncbi.nlm.nih.gov/pubmed/18219621
http://dx.doi.org/10.2307/2346786
http://dx.doi.org/10.1371/journal.pone.0068910
https://www.ncbi.nlm.nih.gov/pubmed/23861951
http://dx.doi.org/10.1016/j.neuroimage.2010.06.041
https://www.ncbi.nlm.nih.gov/pubmed/20600983
http://dx.doi.org/10.1007/s00454-004-1146-y

	Topological Data Analysis Reveals Robust Alterations in the Whole-Brain and Frontal Lobe Functional Connectomes in Attention-Deficit/Hyperactivity Disorder
	Introduction
	Materials and Methods
	Sample
	Imaging acquisition
	Preprocessing
	Functional connectomes
	TDA
	Null model
	Diagnostic group inferences
	Code accessibility

	Results
	Agreement across brain atlases
	Observed versus null model
	Whole-brain topology
	Intranetwork and internetwork inference

	Discussion
	Conclusion
	References


