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Abstract
Methylphenidate (MPH), commonly known as Ritalin, is the most widely prescribed drug worldwide to treat
patients with attention deficit disorders. Although MPH is thought to modulate catecholamine neurotransmission
in the brain, it remains unclear how these neurochemical effects influence neuronal activity and lead to attentional
enhancements. Studies in rodents overwhelmingly point to the lateral prefrontal cortex (LPFC) as a main site of
action of MPH. To understand the mechanism of action of MPH in a primate brain, we recorded the responses
of neuronal populations using chronic multielectrode arrays implanted in the caudal LPFC of two macaque
monkeys while the animals performed an attention task (N � 2811 neuronal recordings). Over different recording
sessions (N � 55), we orally administered either various doses of MPH or a placebo to the animals. Behavioral
analyses revealed positive effects of MPH on task performance at specific doses. However, analyses of individual
neurons activity, noise correlations, and neuronal ensemble activity using machine learning algorithms revealed
no effects of MPH. Our results suggest that the positive behavioral effects of MPH observed in primates (including
humans) may not be mediated by changes in the activity of caudal LPFC neurons. MPH may enhance cognitive
performance by modulating neuronal activity in other regions of the attentional network in the primate brain.
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Introduction
The Centers for Disease Control and Prevention (CDC)

estimate that, in the United States alone, 3.5 million chil-

dren (6.1%) are taking methylphenidate (MPH), widely
known as Ritalin, to circumvent the distractibility associ-
ated with attention deficit/hyperactivity disorder (ADHD;
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Significance Statement

Methylphenidate (MPH), widely known as Ritalin, is the most prescribed drug to treat patients with attention
deficits. Nonetheless, it is still unclear how and why the drug improves attention in humans. Studies in rodents
point to the prefrontal cortex (PFC) as the main target of MPH. To validate these findings in primates, we trained
macaque monkeys to perform an attention task while under various doses of MPH. We also chronically
implanted multielectrode arrays in the posterior PFC of these monkeys to record neuronal ensemble activity
during the task. Surprisingly, we found no effect of the drug on neuronal activity, even at cognitive-enhancing
doses of MPH. The caudal PFC might not be the site of action of MPH in the primate brain.
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Visser et al., 2014). MPH also enhances cognitive func-
tions in healthy humans, monkeys, and rodents (Bain
et al., 2003; Arnsten and Dudley, 2005; Ilieva et al., 2015),
suggesting a general mechanism of action across spe-
cies. However, despite several decades of MPH being
widely used in the clinic (Subcommittee on Attention-
Deficit/Hyperactivity Disorder et al., 2011), we still have a
limited understanding of the mechanisms by which the
drug improves cognitive performance.

Neurochemical studies in rodents have revealed that
MPH blocks dopamine and norepinephrine reuptake
transporters at the level of synapses, modulating dopa-
minergic and noradrenergic receptors signaling in post-
synaptic neurons (Arnsten and Dudley, 2005; Berridge
et al., 2006, 2012). Although the drug is distributed across
the entire nervous system after systemic administration in
rodents, at low doses that improve cognitive perfor-
mance, its effects appear to be localized to the prefrontal
cortex (PFC; Devilbiss and Berridge, 2008; Spencer et al.,
2015), a brain region that plays an instrumental role in
executive functions such as selective attention and work-
ing memory (Desimone and Duncan, 1995; Miller and
Cohen, 2001; Petersen and Posner, 2012). The mecha-
nism by which an increase in catecholamine neurotrans-
mission in PFC neuronal circuits leads to improved
cognitive performance, however, remains elusive.

In rodents, pioneering work combining pharmacological
interventions with single-cell electrophysiology have re-
ported that MPH can modulate the responses of individ-
ual neurons in the PFC by increasing their selectivity for
stimulus locations (Devilbiss and Berridge, 2008; Berridge
and Arnsten, 2015). In primates, to our knowledge, a
single study combined electrophysiology with pharmaco-
logical intervention using drugs approved for the treat-
ment of ADHD in humans. In this study the effects of a
non-stimulant drug (atomoxetine) on the spiking activity of
a small sample of prefrontal neurons (N � 17) were inves-
tigated in a single monkey performing a working memory
task (N � 1) using direct iontophoresis delivery to single
neurons (Gamo et al., 2010). The findings of this early
study were in line with what was previously found by the
same investigators in the rodent, namely, an increase in
the signal-to-noise ratio of persistent activity from pre-
frontal neurons during a working memory task. However,
it is not clear whether the more clinically relevant oral
administration of MPH (as opposed to iontophoresis de-
livery of atomoxetine) modulates the activity of popula-

tions of neurons in the primate PFC in a manner
consistent with findings from basic attention research.

Over the last decades, our basic understanding of the
neuronal mechanisms underlying the effects of attention
on single neurons has considerably progressed (Moran
and Desimone, 1985; Desimone and Duncan, 1995; Treue
and Martínez Trujillo, 1999; Reynolds and Chelazzi, 2004;
Lennert et al., 2011; Niebergall et al., 2011). More re-
cently, new technologies that allow recording the activity
of multiple neurons simultaneously in behaving animals
(Nicolelis et al., 2003; Buzsáki, 2004) have shined a new
light on those mechanisms. Notably, by using simultane-
ous recording techniques, two landmark studies in non-
human primates have shown that attention improves
information coding by neuronal populations primarily by
reducing correlated noise between individual neurons
(i.e., noise correlations) rather than modulating single neu-
ron response (Cohen and Maunsell, 2009; Mitchell et al.,
2009). In support to this finding, both theoretical (Shadlen
et al., 1996; Averbeck et al., 2006; Cohen and Kohn, 2011;
Moreno-Bote et al., 2014; Kanitscheider et al., 2015) and
experimental (Tremblay et al., 2015b; Leavitt et al., 2017b)
evidences show that noise correlations can modulate in-
formation processing in large neuronal populations. Con-
sidering these new insights from basic research, we
hypothesized that MPH improves attentional processing
in the PFC by recruiting similar noise reduction mecha-
nisms.

To test this hypothesis, we trained two macaque mon-
keys to perform a demanding attention task that required
detecting a visual target in the presence of distractors.
Before different experimental sessions, we administered
orally either various doses of MPH or a placebo vehicle to
the monkeys. During performance of the attention task,
we simultaneously recorded the responses of large neu-
ronal populations in the caudal lateral PFC (LPFC) using
chronically implanted 96-channel Utah multielectrode ar-
rays. This region of the PFC was selected because it plays
a causal role in visual attention, as demonstrated by micro-
stimulation, pharmacological, and optogenetic studies in
primates (Dias and Segraves, 1999; Moore and Fallah, 2004;
Noudoost and Moore, 2011; Schafer and Moore, 2011;
Acker et al., 2016). Moreover, its neurophysiological proper-
ties are very well studied and known to strongly represent
attentional processing at the single neuron and neuronal
ensemble levels (Buschman and Miller, 2007; Armstrong
et al., 2009; Gregoriou et al., 2009, 2012; Lennert and
Martinez-Trujillo, 2011; Squire et al., 2013; Tremblay et al.,
2015b). In this experiment, we recorded over 55 behavioral
sessions, yielding 2811 neuronal datasets from which the
neuronal effects of various doses of MPH could be investi-
gated at the single, pairwise, and neuronal ensemble levels.

Materials and Methods
Subjects

Two male macaque monkeys (Macaca fascicularis) both
aged six years old and weighting 5.8 kg (monkey “F”) and
7.5 kg (monkey “JL”) participated in the experiment. All
procedures complied with the Canadian National Council
of Animal Care guidelines and were preapproved by the
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University Animal Care Committee. Over the course of a
testing session, the animals would receive their daily
amount of fluids as rewards for correctly performing the
task. We also provided the animals with fresh fruits and
vegetables as supplements when finishing a recording
session. Body weight, water intake, and mental and phys-
ical hygiene were monitored on a daily basis by veterinary
staff. None of the animals were sacrificed for the purpose
of this study.

Behavioral task
The monkeys were instructed to covertly sustain atten-

tion to one of four Gabor stimuli presented on a screen
while ignoring the other three Gabor stimuli (distractors;
Fig. 1A). A trial would begin with one Gabor stimulus
appearing at one out of four locations on the screen for a
brief period while the monkey keeps its gaze on a central
fixation point (363 ms). This early Gabor stimulus was
defined as the “cue,” indicating that this target had to be
covertly attended to during the entire trial (while keeping
gaze on the central fixation point). After the cue presen-
tation, three other Gabor stimuli would appear on the
screen at the three remaining locations. A variable delay
period would follow (585–1755 ms). Three different trial
types were randomly interleaved within a session. In “tar-
get” trials, after a variable delay interval, the target Gabor
quickly changed orientation (90° clockwise rotation) indi-
cating the monkey to saccade toward the target location
to earn a juice reward (250-ms response time window). In
“distractor” trials, the orientation change occurred in the
distractor Gabor opposite to the target location. To earn a
reward on those trials, the monkey had to inhibit saccad-
ing to the distracting Gabor and maintain fixation on the
central dot. In “target � distractor” trials, two simultane-
ous orientation changes co-occurred in the target Gabor
and in the distractor opposite to the target. The monkeys
had to make a saccade toward the target and not toward
the distractor to earn the reward. Every trial was divided
into three time epochs: (1) the cue epoch (cue onset to
200-ms postcue onset); (2) the attention epoch (600-ms
postcue onset to 1000-ms postcue onset); (3) the sac-
cade epoch (50 ms before to 50 ms after saccade onset).
The monkeys’ gaze position was monitored at a rate of
500 Hz using an infrared video-based eye-tracking sys-
tem (Eyelink 1000, SR Research). Monkey “F” completed
a mean (STD) of 817.22 (93.43) trials per session. Monkey
“JL” completed an average of 715.00 (100.44) trials per
session. The average length of a session for monkey “F”
was 2.26 (0.28) h, and 1.44 (0.19) h for monkey “JL.”

Our subjects could make several different types of er-
rors while performing this attention task, which can be
broadly related to different types of maladapted behaviors
in humans. For one, monkeys could erroneously break
fixation during the cue or the delay epoch, that is, before
a Go signal (the change in orientation) is presented. This
error type could loosely be related to impulsivity, that is,
the propensity to respond prematurely without foresight
(Winstanley et al., 2006). A second error type noticeable in
our behavioral task is the propensity to respond to a
distractor Go signal. For example, monkeys would some-

time saccade to the distractor location on a change in the
distractor stimulus orientation that ought to be ignored to
successfully complete the trial. We can loosely relate this
error type to the concept of distractibility in humans,
which is the propensity to pay attention to stimuli irrele-
vant for the task at hand. These two error types, impul-
sivity and distractibility, will be analyzed for each drug
dose in addition to overall task performance. Finally, a
general indicator of motivation while be inferred from the
total number of trials completed by the animals in a given
session. Motivation has also been shown to be influenced
by MPH in some studies with nonhuman primates (Rajala
et al., 2012). Nowhere in this study will we pretend that our
experiment offers an “animal model” of ADHD, impulsiv-
ity, or distractibility. The terms “impulsivity” and “distract-
ibility” are used without direct connection to the
symptomatology of ADHD in humans.

Surgical procedure
Surgeries were conducted under general anesthesia

using isofluorane administered via endotracheal intuba-
tion. Previous to the neuronal recordings the animals were
implanted with titanium head posts used to restrain head
motion and allow accurate measures of eye movements
during training and recording sessions. We chronically
implanted 96-channel “Utah” multielectrode arrays
(Blackrock Microsystems) in each monkey’s left caudal
LPFC following a surgical procedure described elsewhere
(Fig. 2A; Leavitt et al., 2013). The multielectrode array was
inserted on the prearcuate convexity posterior to the cau-
dal end of the principal sulcus and anterior to the arcuate
sulcus, a cytoarchitectonic region known as area 8A, the
homolog of area 8A in the human LPFC (Fig. 2A,B;
Petrides and Pandya, 1999; Petrides, 2005). The array
connector was fixed to the skull using titanium screws
and bone cement providing easy access during recording
sessions.

Neurophysiology
We simultaneously recorded the spiking activity from

many single neurons isolated from the 96-channel multi-
electrode array using a Cerebus Neural Signal Processor
(Blackrock Microsystems). A block of 32 channels could
be recorded simultaneously over the course of a session.
The raw signal was bandpass filtered (0.3 Hz to 7.5 kHz)
and digitized (16 bit) at 30,000 samples/s. For each chan-
nel, spikes were detected every time the digitally high-
pass filtered (250 Hz/4-pole) voltage trace crossed a
threshold equivalent to approximately four times the root
mean square of the noise amplitude. The extracted spikes
and associated waveforms were sorted offline using both
manual and semi-automatic techniques (Offline sorter,
Plexon Inc.). Monkey “F” completed 27 recording ses-
sions with a mean (STD) of 47.89 (6.67) simultaneously
recorded neurons. Monkey “JL” completed 28 recording
sessions with a mean of 51.89 (3.67) simultaneously re-
corded neurons.

Drug administration
The pharmacokinetics and bioavailability of MPH in

humans and monkeys have been described in detail pre-
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viously and guided our selection of dose range and ad-
ministration schedule (Wargin et al., 1983; Doerge et al.,
2000). The peak serum concentration of MPH is attained
�60 min after oral administration in monkeys, with a
half-life of 1.79 h. Therapeutic serum concentration is
already obtained 30 min after oral administration in mon-
keys, which agrees with the delay to clinical onset in

children ranging from 20 to 60 min, and lasting 3–5 h
(Kimko et al., 1999; Doerge et al., 2000). Moreover, clinical
evidence shows that the optimal dose of MPH for children
with ADHD is patient specific, with best dosages ranging
from 5 to 60 mg/d (Subcommittee on Attention-Deficit/
Hyperactivity Disorder et al., 2011). Therefore, we expect
that each monkey in this experiment might best respond
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Figure 1. Behavioral task and performance. A, Behavioral task with the three randomly interleaved trial types. Blue dashed circles
represent the focus of covert attention. Pink dashed circles indicate orientation change(s). Pink arrows indicate saccadic eye
movements. Blue dot represents gaze position. B, Average behavioral performance of each subject under placebo sessions only. The
colors indicate the proportion of each trial outcome in a behavioral session. Fixation break represents errors where the subject would
respond before a Go signal was given. Sac. to distractor represents errors where the subject would respond to a distracting stimulus.
No response represents trials where the subject would not provide a response. C, D, Line plots representing the change in overall hit
rate relative to matched placebo sessions in the attention task following various doses of MPH. Hit rate is considered a proportion
(Hit/Hit�Errors). Differences in proportion (hit rate) across treatment conditions are computed with �2 tests. Asterisks represent
statistically significant changes in hit rate relative to placebo sessions (�2 test, p � 0.05). E, F, Same format as C, D but representing
the proportion of specific error types across treatment conditions. Up means more errors. Refer to Materials and Methods for
definitions. Error bars represent the SE of the sample proportion estimate.
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to a different dose. Based on the above information and
on a previous study in monkeys demonstrating MPH-
dependent behavioral improvements with best doses
ranging from 0.1 to 1.2 mg/kg (Gamo et al., 2010), we tried
a range of drug doses to find a dose that best improved
performance at the attentional task in each animal. We
orally administered 2.5, 5, 6.25, 7.5, or 10 mg short-acting
tablets of MPH (Ritalin, Novartis) to each animal, which
corresponds to a weight-based dosing of 0.43, 0.86, 1.08,
1.29, or 1.72 mg/kg for monkey “F,” and 0.33, 0.67, 0.83,
1.00, or 1.33 mg/kg for monkey “JL.” We orally adminis-
tered MPH or placebo to the monkeys 30 min before the
beginning of a behavioral testing session. In treatment
sessions, we diluted MPH into 5 ml of concentrated fruit
juice vehicle and gave the juice to the monkey orally using
a syringe. Because our monkeys were under a water
control schedule between sessions, they always drank
the entire content of the syringe immediately when of-
fered. A given dose was given to our subjects for three
consecutive recording sessions (one session per day) to
control for normal day-to-day variation in behavioral per-
formance. A block of three treatment sessions was pre-
ceded and followed by a block of two placebo sessions
(one session per day). This bilateral flanking of treatment
sessions with placebo sessions (Pb-Pb-MPH-MPH-MPH-
Pb-Pb) allowed a more robust MPH-Placebo comparison
by controlling for low-frequency confounds on perfor-
mance, such as task learning or overall motivation to
perform the task. In placebo sessions the experimental
procedures were identical except for the fact that the
concentrated fruit juice administered before the session
did not contain MPH. Out of 27 sessions, monkey “F”
completed 15 sessions with MPH and 12 with placebo,
whereas monkey “JL” completed 16 sessions with MPH
and 12 sessions with placebo out of 28 sessions in total.

Data analysis
All data analyses were conducted using custom scripts

written in MATLAB (MathWorks Inc.), and standard oper-
ations in Excel (Microsoft Inc.) and SPSS (IBM Inc.).

Throughout the analyses, the data from each monkey
were analyzed separately and was not averaged across
monkeys. This allowed detecting potential interindividual
differences in drug response, both at a behavioral and
neurophysiological level. This also provided a mean to
look for patterns of drug dose-responses that are consis-
tent across monkeys, providing an additional protection
against false positive results through direct replication in a
second animal. For each monkey individually, the behav-
ioral data of sessions with the same MPH dose (a block of
three consecutive sessions with a given dose) was pooled
to compute the performance statistics (hit rate). The same
was done for placebo sessions flanking each block of
treatment sessions, such that the performance under
each dose of MPH could be directly compared with the
performance during flanking control sessions. Behavioral
performance was compared between MPH and placebo
sessions by comparing hit rates [Hits/(Hits � Misses)] for
a block of drug sessions and matched placebo sessions
using Pearson’s �2 tests (�2) for differences in propor-
tions.

The tuning, or “selectivity,” of single neuron responses
for the cue position, the allocation of selective attention,
and the saccade goal were computed during the three
corresponding task epochs (cue, attention, and saccade)
during “target only” trials. We used a Kruskal–Wallis one-
way ANOVA on the neuronal firing rate across the four
possible target locations to determine the preferred and
anti-preferred visual quadrant, and to define whether each
neuron is considered “selective” or “non-selective” during
each task epoch (cue, attention, and saccade), based on
the significance of the test evaluated at p � 0.01.

Spike density functions (SDFs) for each neuron were
obtained by convolving the spike train of each trial with a
Gaussian kernel with a SD of 30 ms. Trial-averaged SDF
were obtained by averaging the resulting time series
across all trials of the same task condition, each one of
the four target positions being considered one condition.
Normalized population responses for each condition were
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Figure 2. Neurophysiological recordings. A, Location of chronically implanted multielectrode Utah array within the left caudal LPFC.
The shaded pink area roughly represents area 8A in the macaque brain. The blue square represents implant location. P: principal
sulcus. AS: arcuate sulcus superior. AI: arcuate sulcus inferior. B, Implant location based on intra-operative photography for both
monkey “F” and monkey “JL” in reference to major sulci. Each small square represents one of the 96 microelectrodes on the array.
Colors represent the spatial attentional tuning of the neurons recorded at each electrode site as a function of the four quadrant
locations (inset). Note tuned stands for neurons that do not show attentional modulation. Inactive represents reference electrodes and
grounds.
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obtained by z-scoring the trial-averaged SDF of each
individual neuron and then pooling across neurons.

From the trial-averaged SDF of each neuron, 19 single
neuron response metrics were computed across the three
task epochs and compared across treatment conditions
to detect potential effects of MPH on single neuron activ-
ity. For each epoch, these metrics were computed only on
selective neurons for the corresponding epoch.

Visual epoch
(1) The “baseline firing rate” was computed from an

interval of 200 ms before cue onset by averaging the
neuronal activity in this time window. (2) The “peak cue-
elicited response” was computed by finding the trial-
averaged peak response in the preferred quadrant from a
time window of 200 ms after cue onset. (3) The “latency of
cue-elicited response” was calculated by measuring the
time interval between cue onset and peak response in the
preferred quadrant. (4) The “Fano factor of peak visual
response” is the coefficient of variation, or the mean-
normalized SD, of the sample of peak cue-elicited re-
sponses over trials. (5) The “attentional modulation of
visual response” is the ratio between the average peak
visual response when an attended target stimulus ap-
pears within the preferred quadrant of the neuron, and the
average peak visual response when a non-attended dis-
tractor appears within the preferred quadrant of the neu-
ron. (6) The “peak distractor-elicited response” is the
average peak visual response elicited by a distractor ap-
pearing within the preferred quadrant of the neuron. (7)
The “latency of distractor response” is the time interval
between the distractor stimuli onset and the peak
distractor-elicited visual response. (8) The “Fano factor of
peak response” is the coefficient of variation of all peak
cue-elicited responses when the peak timing is deter-
mined on a single-trial basis rather than on a trial average
peak response. (9) “Receptive field (RF) modulation of
visual response” is computed using the ratio of the peak
response when the cue appears inside the preferred
quadrant, and the peak response when the cue appears in
the anti-preferred quadrant. (10) The “peak response to
anti-preferred” is the peak cue-elicited response when the
cue appears in the anti-preferred quadrant. (11) The “la-
tency of the anti-preferred response” is the time interval
between the onset of the cue and the peak cue-elicited
response when the cue appears in the anti-preferred
quadrant.

Attention epoch
(12) The “sustained response when attention is in the

RF” is the average response over a time window of 400
ms in the middle between cue offset and saccade onset
when the monkey is allocating covert visual attention
inside the RF (i.e., preferred quadrant) of the neuron. (13)
The “sustained response when attention outside the RF”
is the same as 12, but when covert visual attention is
allocated outside the RF (i.e., in the anti-preferred quad-
rant). (14) The “attentional modulation of sustained re-
sponse” is the ratio between 12 and 13, i.e., the ratio
between the response when attention is allocated inside
versus outside the RF of the neuron. (15) The “Fano factor

of sustained response” is the Fano factor of the sustained
response described in 12, i.e., when covert attention is
allocated inside the RF of the neuron.

Saccade epoch
(16) The “peak saccadic response” is the peak re-

sponse aligned to saccade onset when the saccade is
made toward the preferred quadrant of the neuron. (17)
The “peak anti-preferred saccade” is the peak response
aligned to saccade onset when the saccade is made
toward to anti-preferred quadrant of the neuron. (18) The
“saccadic response modulation” is the ratio between 16
and 17, i.e., when saccades are made toward versus
opposite to the preferred quadrant. (19) The “Fano factor
of the saccadic response” is the Fano factor of the peak
saccadic response when directed toward the preferred
quadrant.

A “noise correlation” is the trial-to-trial spike count
correlation between two neurons’ simultaneous activity
(Cohen and Kohn, 2011). This correlation is called “noise”
because it is computed using the variance over trials of
the same stimulus condition, therefore modeling the error,
or noise, around the mean response for a given stimulus
condition. This is in contrast with the “signal correlation”
which is computed across trials of different stimulus con-
ditions. In this latter case, the correlation is computed
between two neurons’ average response across all stim-
ulus conditions, and can be thought of as a measure of
tuning similarity. Noise correlations were computed in our
sample between all possible pairs of simultaneously re-
corded neurons using the Pearson’s correlation coeffi-
cient r. A series of noise correlations were computed as a
function of two experimental factors. First, noise correla-
tions were computed for each of the four task epochs
(baseline fixation, visual epoch, attention epoch, and sac-
cade epoch). Second, noise correlations were computed
either on all recorded neurons, or only on selective neu-
rons for the corresponding task epoch. Noise correlations
computed over sessions with the same drug dose were
pooled together in a single distribution. From these dis-
tributions, the median noise correlation coefficient was
reported for the sub-population of positive coefficient,
and for the sub-sample of negative coefficient. Keeping
positive and negative noise correlations separate is im-
portant since these two have different physiologic inter-
pretations (i.e., shared or direct excitatory input in the
case of positive, and shared input of opposite valence or
direct inhibitory input in the case of negative noise corre-
lations). To ease visualization of potential effects of the
drug on noise correlations, the percentage change from
placebo was calculated and reported for all series of noise
correlations. Finally, we describe the “noise correlation
structure” in our neuronal populations, which is the rela-
tionship between noise correlations and tuning similarity
between neurons. Neurons that have similar tuning are
expected to share more common inputs or make more
direct connections, thus increasing their noise correlation
(Cohen and Kohn, 2011). We computed the relationship
between signal correlation and noise correlation for pla-
cebo sessions and all different drug doses to detect
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potential MPH-dependent differences in the noise corre-
lation structure.

To assess the quality of the attentional filtering in area
8A’s neuronal population activity, we used a support vec-
tor machine (SVM) linear decoder to which we fed the
simultaneously recorded firing rates of the each recorded
neuronal ensemble (Chang and Lin, 2011). A neuronal
ensemble is a population of simultaneously active neu-
rons involved in the same neuronal computation (Hebb,
1949; Nicolelis et al., 1997). Using this method, it was
recently possible to decode the focus of covert attention
using the instantaneous activity of ensembles of recorded
neurons in the macaque caudal LPFC (Tremblay et al.,
2015a,b). Here, we used this method to quantify the
amount of attentional information that can be extracted
from the neuronal ensemble activity (Quian Quiroga and
Panzeri, 2009), and to compare it across drug treatments
to detect potential MPH-related effects on the attentional
filtering implemented by prefrontal neuronal ensembles.
The algorithm’s decoding accuracy of the focus of atten-
tion was used as a proxy for the coding efficiency of the
neuronal ensembles and was computed using a cross-
validation procedure where 4/5 of trials are used for train-
ing the algorithm and the remaining 1/5 of trials are used
to test the decoder’s predictions, iteratively (for detailed
method, see Tremblay et al., 2015b). The statistical sig-
nificance of the decoding accuracies for each task ep-
ochs and each drug dose were tested against a control
condition where the labels of each trials were iteratively
permuted randomly during the supervised training phase
of the machine learning algorithm (N � 1000 permuta-
tions). To better visualize the potential MPH-dependent
effects on neuronal ensemble coding of attention in area
8A, a percentage change in decoding accuracy from pla-
cebo was also computed. This ratio was computed using
flanking placebo sessions recorded immediately before
and immediately after each set of treatment sessions
using a given drug dose. This was done to control for
low-frequency variations in neuronal ensembles’ compo-
sition over time.

Experimental design and statistical analysis
Across the manuscript, data from both monkeys was

never combined or averaged. This allows a direct com-
parison between the results of the two monkeys and to
assess the replicability of observations across subjects. It
also avoids the problem analyzing nested data, which
require specific statistical corrections (Aarts et al., 2014).
Only trends that replicated across both monkeys were
considered true effects. Bonferroni corrections for multi-
ple comparisons have been applied where necessary. No
corrections have been applied to results that were non-
significant even before statistical correction (these uncor-
rected results would remain null after correction). Effect
sizes have been reported where statistical power is too
high for p values to be meaningful (e.g., correlation anal-
yses). If this concept is not clear to the reader, please
consult the following resource (Wasserstein and Lazar,
2016).

Results
Behavioral performance

We compared the monkeys’ behavioral performance at
the task during MPH sessions with performance during
matched placebo sessions. Overall, both monkeys per-
formed well above chance (chance � 25%, four options)
during placebo sessions (Fig. 1B). In monkey “F,” MPH
slightly enhanced performance when administered at 0.86
mg/kg (p � 0.05, �2 test). A lower dose had no effect on
performance, and higher doses decreased performance
relative to placebo (p � 0.05, �2 test; Fig. 1C). In monkey
“JL,” the best dose was 0.67 mg/kg (p � 0.001, �2 test;
Fig. 1C). A lower dose had no effect on performance and
higher doses had either null or smaller positive effects (p
� 0.01, �2 test; Fig. 1D). These variable, weak behavioral
results are comparable to those reported by previous
studies in monkeys where MPH was reported to have a
weak, subject-specific, but statistically significant effect
on cognitive performance (Prendergast et al., 1998; Bain
et al., 2003; Gamo et al., 2010; Rajala et al., 2012). We did
not find MPH to have specific effects on one type of error,
whether impulsivity or distractibility errors (Fig. 1E,F) in
either monkey. Both types of errors were affected by the
drug at various levels (p � 0.05, �2 test).

Single neuron analyses
First, we analyzed the effects of all doses of MPH on the

responses of single neurons. To qualitatively detect any
main effect of MPH (pooled across all doses) on the
average response profile of the sampled neuronal popu-
lation, we overlapped the population-averaged SDF for
placebo sessions with the population-averaged SDF dur-
ing all MPH sessions (Fig. 3A,B). This sample of neurons
included only neurons that were attention-selective (i.e.,
that are modulated by visual attention) allowing to visual-
ize the attentional modulation and potential effects of
MPH on this modulation. To illustrate the attentional mod-
ulation in this sample of neurons, we computed the aver-
age response when the attended stimulus/target was
inside the RF (attend in RF in Fig. 3), and when the
stimulus was outside the RF (attend out RF in Fig. 3), as is
routinely done in basic attention research. The two re-
sponse profiles greatly differ during the delay epoch de-
pending on the focus of attention (in or outside the RF)
despite identical stimulus presentation and motor state
during this epoch (all four grating stimuli were present on
the screen while the monkey was fixating on the center
dot). This modulation is the trademark of visual selective
attention at the single neuron level, although it is difficult
to disentangle the contribution of saccade planning from
visual attention using visual-saccadic paradigms such as
ours (Reynolds and Chelazzi, 2004). MPH, however, does
not seem to modify the average attentional response
profile, as shown by the near-perfect overlap between the
SDF of similar conditions during placebo and MPH ses-
sions in both monkeys (Fig. 3A,B). The same is true when
placebo sessions are contrasted only to MPH sessions
showing a positive behavioral effect of the drug (Fig.
3C,D).
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To quantify these qualitative observations, we further
characterized the response profile of each recorded sin-
gle neuron (N � 2811, including multiunit clusters) using
19 response metrics for all doses independently (see
Materials and Methods for details on metrics). In Figure 4,
we present the results for all 19 response metrics as a
function of monkey, task epoch, and drug dose. Each
point represents the average metric across all neurons
that met the criteria for the specific analysis (e.g., modu-
lation by attention; see Materials and Methods). We

looked for any dose-response effect of the drug, whereby
increasing doses produce a more profound deviation
(negative or positive) from placebo. The dose-response
curve did not need to be linear (e.g., U-shaped curves
were considered). As a protection from spurious findings,
the dose-response curve had to be replicated in both
monkeys. However, the curve could be shifted horizon-
tally across subjects to account for subject-specific best
dose responses. Across all 19 metrics, we did not find a
single metric that satisfied both criteria above. We com-
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Figure 3. Qualitative effects of MPH on the average single neuron response. A, Attentional modulation of single neuron activity
averaged over the entire sample of tuned cells and trials (sample size reported with N in figure). The trial-averaged SDFs are displayed
separately for MPH and placebo (PLB) sessions. The light blue and red SDFs depict the average single neuron response on trials
where attention is allocated inside, or opposite to the neuron’s preferred location (i.e., RF), respectively. The abscissa represents the
time from trial onset and the ordinate the population neuronal firing rate (z-scored). Shaded areas represent SEM. The average
responses during all MPH sessions are overlaid on top of the average response during placebo sessions to illustrate the near-perfect
overlap in single neuron responses across treatment conditions. B, Same as in A but for monkey “JL.” C, D, Same as A, B but only
including the MPH sessions showing the best behavioral improvement due to treatment (best-dose analysis; 0.86 mg/kg for monkey
“F,” 0.67 mg/kg for monkey “JL”). The same absence of difference in this best-dose analysis is demonstrated by the overlap of the
MPH and PLB curves in C, D.
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puted one-way ANOVAs with “dose” as the factor on each
metric to test for statistically significant effects of MPH.
We defined a significant effect as an effect that passed a
Bonferroni correction for multiple comparisons, and that
was found in both animals. All metrics failed to cross a
statistical threshold of p � 0.05 following Bonferroni cor-
rection for multiple comparisons (38 tests), except one:
“attentional modulation of visual response” (Fig. 4A),
where 2.5 mg in monkey “F” produced a significantly
higher score (F(5,290) � 5.2, p � 0.001) than placebo. Since
this finding was not replicated in the other monkey at any
other dose and was not embedded in a larger dose-
dependent trend, it was considered a spurious finding.
Overall, these quantitative analyses corroborate what was
observed qualitatively in Figure 3, that is, that MPH does
not seem to reliably modify single neuron responses.

Noise correlations
A possible explanation for the cognitive-enhancing ef-

fects of MPH is that the drug decreases correlated noise
between neurons (noise correlations). To test this hypoth-
esis, we analyzed the correlated activity from an average
of 48 simultaneously recorded neurons in monkey “F” and
52 neurons in monkey “JL” across all 55 recording ses-
sions. We computed the noise correlations between all
possible pairs of simultaneously recorded units from dif-
ferent electrodes within the multielectrode array (exclud-
ing neurons recorded from the same electrode). We
computed those correlation coefficients (Pearson’s R) for
all four task epochs separately (baseline fixation, visual,
attention, and saccade; Fig. 5). Whereas this first analysis
included all neurons irrespective of their tuning, we also
replicated this analysis for the subgroup of task-selective
neurons specific to each epoch (e.g., attention-selective
neurons during the attention epoch).

As for the single neuron analysis above, we searched
for results that would (1) show a dose-response trend,
and (2) replicate across the two monkeys, with some
flexibility on the horizontal shift across doses. Again, the
results were inconclusive for all epochs, and neuronal
sample (all neurons or only those selective; Fig. 5). To
substantiate this qualitative assessment, we ran one-way
ANOVAs with dose as the factor for each epoch, neuronal
group, correlation sign (positive or negative), and monkey.
All ANOVAs produced p values � 1.0 � 10�50. Obviously,
such a statistical significance is a consequence of the
very large sample size of correlations rather than the size
of the effect of MPH (�5000 correlations for each test;
one noise correlation per possible pair of neurons). With
such a large sample size comes an inflated statistical
power. In this context, statisticians advice that effects

sizes need to be interpreted to assess the importance of
the effect instead of only relying solely on p values (Co-
hen, 1992; Lin et al., 2013; Wasserstein and Lazar, 2016).
When computing effect sizes for each ANOVA, we find
that no model provides �2% of explained variance (�2 �
0.02). In other words, MPH doses account for �2% of the
variability observed in noise correlations across sessions.

Noise correlations between a pair of neurons can be
modulated by the tuning similarity of those two neurons.
The function that links these two variables (noise correla-
tion and tuning similarity) is considered as the noise cor-
relation “structure” of the recorded neuronal population.
This structure could be modulated by MPH as a mecha-
nism of action of the drug. We plotted this relationship for
each drug dose for each monkey separately (Fig. 6). We
found that when neurons differ the most in tuning (signal
correlation close to –1), the average noise correlations are
close to zero or slightly negative. Moreover, the average
noise correlation coefficient increases proportionally with
the tuning similarity of pairs of neurons, which is to be
expected from neurons sharing more common inputs. To
investigate the effects of MPH on this correlation structure
for both subjects, we ran one-way ANOVAs with dose as
the factor for 10 signal correlation “groups” (each data
point on the x-axis of Fig. 6 is for one group). These
groups simply pool similar signal correlations together
according to the following intervals: [–1 to –0.8], [–0.8 to
–0.6], etc. Similarly to the above noise correlation analy-
ses, each dose group contained �10,000 correlations,
inflating statistical power beyond the point where p values
are interpretable. As expected, all p values computed with
the ANOVAs converged to zero (all p � 1.0 � 10�50).
When evaluating the effect sizes (�2) in addition to p
values, we found that no group comparison yielded �1%
of explained variance (all �2 � 0.01). In other words, MPH
doses account for �1% of the variability observed in
noise correlations across the spectrum of tuning similar-
ity.

Ensemble decoding
MPH could improve the neuronal encoding of spatial

attention by increasing the reliability of neuronal ensem-
bles’ activity in the LPFC rather than modifying single
neuron or pairwise metrics. It is also possible that very
small changes in the correlation structure of these ensem-
ble can have an impact on the quality of the neuronal
representation (Shadlen et al., 1996; Moreno-Bote et al.,
2014; Kanitscheider et al., 2015). To investigate this pos-
sibility, we used a SVM linear decoder to extract the
allocation of attention, visual stimulation, and saccadic
eye movements from the responses of large ensembles of

Figure 4. Effects of MPH on 19 single neuron response metrics. A, Visual response metrics for visually-selective neurons as a function
of drug dose. Refer to Materials and Methods for the meaning of each metric. The x-axis depicts MPH drug dose using arbitrary units
(a.u.), from the smallest dose to the biggest for each monkey. These are 0.43, 0.86, 1.08, 1.29, or 1.72 mg/kg for monkey “F,” and
0.33, 0.67, 0.83, 1.00, or 1.33 mg/kg for monkey “JL.” The y-axis is relative to the particular metric being plotted. Blue and green lines
are for monkey “F” and monkey “JL,” respectively. The top-leftmost subplot includes the size of single neurons samples included for
the computation of all the visual metrics. The red error bars correspond to the best-dose of MPH according to behavioral
performance. The colored numbers to the right of each line represent the p values for the ANOVA test ran for each metric, uncorrected
(top), and corrected for multiple comparisons (bottom). B, Same as in A but for the attentional response metrics of attention-selective
neurons. C, Same as in A but for the saccadic response metrics of saccade-selective neurons. All error bars represent SEM.
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neurons recorded simultaneously (see Material and Meth-
ods). Using this methodology, we previously found that it
was possible to decode the focus of spatial attention from
ensembles of prefrontal neurons and that this represen-

tation was sensitive to distractors and predictive of up-
coming attentional mistakes (Tremblay et al., 2015a,b).

When applying those machine learning techniques to
the current dataset, we found that visual stimulation, spa-
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Figure 5. Effects of MPH on noise correlations. Each line illustrates the median noise correlation coefficient separately for positive and
negative noise correlations (blue and red, respectively) as a function of drug dose (x-axis). The x-axis uses arbitrary units, from the
smallest dose of MPH to the biggest for each monkey. These are 0.43, 0.86, 1.08, 1.29, or 1.72 mg/kg for monkey “F,” and 0.33, 0.67,
0.83, 1.00, or 1.33 mg/kg for monkey “JL.” The left column presents results from analyses including all recorded neurons, independent
of their selectivity. The right column includes only neurons that were selective (i.e., tuned) for the corresponding epoch. Since no
tuning can be measured during the baseline fixation epoch, visual tuning was used as a replacement in this analysis. Each column
presents results for each monkey independently.
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tial attention, and saccadic eye movements could be
decoded from the single-trial information contained in the
instantaneous firing of neuronal ensembles. The accura-
cies varied from 40% to 100%, all above the change
decoding accuracy of 25%. When looking at the effects of
MPH on the coding accuracy of attention, visual stimulus
location and saccade endpoint, we found inconsistent
effects (Fig. 7). Qualitatively, we observed neither a dose-
response effect of MPH administration, nor any effects
that replicated in both monkeys. Quantitative analysis of
the effect of MPH on the decoding accuracy of visual,
attentional, and saccadic information revealed no statis-
tical differences using one-way ANOVAs with dose as the

factor (monkey “F”; visual: F(5,21) � 1.5, p � 0.23, atten-
tion: F(5,21) � 1.3, p � 0.32, saccade: F(5,21) � 1.1, p �
0.41; monkey “JL”; visual: F(5,22) � 0.86, p � 0.52, atten-
tion: F(5,22) � 0.92, p � 0.49, saccade: F(5,22) � 0.83, p �
0.54), even before correction for multiple comparisons.

Discussion
Contrary to our hypothesis, our results support that oral

administration of MPH does not produce detectable ef-
fects on the neurophysiology of the caudal PFC in mon-
keys, a brain region otherwise known for its critical role in
attention as demonstrated by microstimulation, pharma-
cological, and optogenetic studies in primates (Dias and
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Figure 6. Effects of MPH on noise correlation structure. A, Relationship between the signal correlation (i.e., tuning similarity) and noise
correlation between every possible pairs of simultaneously recorded neurons, presented for each drug dose (colored lines). As
expected, the more similar is the tuning between two neurons, the more noise they share through common inputs. B, Same as in A,
although for monkey “JL.” Best dose of MPH based on behavioral performance is in bold in the legend. Error bars represent SEM.
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overlaps roughly with the theoretical chance performance of 25%. B, Same as A but for monkey “JL.” Error bars represent SEM.
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Segraves, 1999; Moore and Fallah, 2004; Noudoost and
Moore, 2011; Schafer and Moore, 2011; Acker et al.,
2016). Since the vast body of literature from rodent re-
search all point to the PFC as the main site of action of
MPH (Berridge and Arnsten, 2015; Spencer et al., 2015),
we are surprised that no systematic effects were detected
at the single, pairwise, or neuronal ensemble level in the
current study in nonhuman primates. In search for effects
of MPH on single neuron activity, we have performed all
mainstream neurophysiological analyses common to ba-
sic attention research in primates, and found no consis-
tent effect. Noteworthy, this absence of effect is observed
even at doses that increase the monkeys’ behavioral per-
formance. To our knowledge, this is the largest neuro-
physiological investigation of MPH to be performed in
nonhuman primates with �2800 neuronal recordings [the
only other study by Gamo et al. (2010) recorded from 17
neurons). We believe these negative results deserve to be
shared with the community and new directions of re-
search into the mechanism of action of MPH ought to be
discussed.

Neuroanatomical considerations
This series of negative neurophysiological findings does

not support the hypothesis that MPH would affect both
single neuron and correlated noise activity patterns in the
primate dorsolateral PFC. Our choice of brain region for
neuronal recordings was based on solid evidence from
neurophysiological studies in nonhuman primates dem-
onstrating that this brain area and the adjacent frontal eye
fields (FEFs) are areas robustly associated with visual
selective attention (Noudoost and Moore, 2011; Schafer
and Moore, 2011; Squire et al., 2013; Clark et al., 2015;
Tremblay et al., 2015b). In parallel, neuropharmacology
and neurophysiology research in rodents have identified
the PFC as the primary target of MPH. Studies in rodents
have provided compelling evidence that MPH affects
preferentially the neurochemistry and neurophysiology of
the PFC at low doses that improve cognitive performance,
with little effects outside the PFC (Berridge et al., 2006;
Devilbiss and Berridge, 2008; Spencer et al., 2012, 2015;
Berridge and Arnsten, 2015). We do not believe our study
challenges the results from those rodent studies nor
questions the results from basic attention research in
nonhuman primates. We propose, however, that our neg-
ative findings might arise from neuroanatomical consid-
erations when translating pre-clinical results from the
rodent brain to the primate brain.

The PFC is a vast landscape with several sub-regions
both in the macaque monkey brain and in the human
brain. These distinct anatomic areas within the PFC are
differentiated both by their cytoarchitecture (Barbas and
Pandya, 1989; Preuss and Goldman-Rakic, 1991;
Petrides and Pandya, 1994), their corticocortical connec-
tivity and sub-cortical projection pattern (Petrides and
Pandya, 1999, 2006), and their specific behavioral conse-
quences following lesions, which allow establishing
double-dissociations within that landscape (Petrides,
2005; Simmons et al., 2010; Rudebeck and Murray, 2011;
Rudebeck et al., 2013). The target area in the current

study is only one of many subdivisions in the primate PFC.
Therefore, our results do not rule out the possibility that if
we had placed our multielectrode arrays in a different area
of the PFC (for example, area 9/46) we would have been
able to capture neurophysiological effects of MPH similar
to the ones previously reported in the rodent literature.
However, we are doubtful of such a proposition because
area 9, 46, and 9/46 of the primate dorsolateral PFC are
more robustly associated with working memory and mon-
itoring within working memory rather than attentional pro-
cesses (Goldman-Rakic, 1995; Curtis and D’Esposito,
2004; Petrides, 2005; Leavitt et al., 2017a).

An important question to answer is whether there is a
homolog of the caudal dorsolateral PFC in the rodent
brain. This question might be particularly difficult to an-
swer since there exists no brain map that describes neu-
roanatomical homologies between rodent and primate
PFCs. Many career neuroanatomists would even question
the presence of a homolog of the primate PFC in the
rodent brain since the rodent frontal cortex lacks the
granularity (i.e., presence of stellate cells in Layer IV) that
is the hallmark of the PFC in primates, including humans
(Petrides and Pandya, 1994; Palomero-Gallagher and
Zilles, 2004). This absence of demonstrated homology
poses a serious problem when researchers attempt to
bridge the two separate worlds of primate and rodent PFC
research. Our study is no exception.

It may be more appropriate to interpret our results
within the framework of human neuroimaging studies that
provide indirect measures of MPH activity (e.g., using
positron emission tomography; PET). As opposed to re-
sults from rodent research, findings from this literature
propose several targets within and outside the PFC where
MPH can elicit its effects. Indeed, systemic administration
of MPH in humans leads to changes in regional cerebral
blood flow (rCBF) both inside and outside the PFC. Areas
including the striatum, the supplementary motor area and
the posterior parietal cortex are significantly modulated in
healthy human subjects undergoing PET imaging follow-
ing administration of clinically relevant doses of MPH
(Mehta et al., 2000; Volkow et al., 2005). In parallel, phar-
macological studies analyzing the occupancies by MPH
of the dopamine and norepinephrine transporters (both
primary targets of MPH) find a high level of binding in
several cortical and sub-cortical areas outside the PFC,
such as the thalamus and striatum (Volkow et al., 1998;
Rosa-Neto et al., 2005; Hannestad et al., 2010). Similar
results have been reported using functional magnetic res-
onance imaging (Peterson et al., 2009; Tomasi et al.,
2011) and electroencephalography (Dockree et al., 2017)
in humans, suggesting that the MPH has widespread
effects in several brain regions. Given those potential
targets of MPH identified from human research, one might
ask why we chose to record from the PFC in our monkeys.
The answer is twofold: (1) the multielectrode arrays we
use to record from many neurons simultaneously and
measure noise correlations cannot be implanted in sub-
cortical structure or deep sulci, and (2) the PFC remains
the only brain area that is modulated by MPH both in
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human and rodent research, making it the most logical
first target for our investigation.

Importantly, a recent microdialysis study in monkeys
found no effects of cognitive-enhancing doses of MPH on
dopamine release in the monkey PFC in conjunction with
an increase of dopamine release in the striatum (Kodama
et al., 2017). Dopamine release modulation is one of the
mechanisms through which MPH is thought to exert its
effects on neurophysiology (Arnsten and Dudley, 2005).
Our findings, which show an absence of effect of MPH on
prefrontal neurophysiology, at least partly agree with the
negative findings reported by Kodama et al., on prefrontal
neurochemistry. Taken together, these two converging
sets of observations ask for further investigations into the
effects of MPH on the primate brain. It is worth noting,
however, that the study by Kodama et al. (2017) focused
on a slightly more anterior area of the monkey LPFC
encompassing the principalis sulcus (area 8A, 9/46, and
46).

Study limitations
Our study includes some limitations worth discussing.

First, as discussed above, the use of multielectrode arrays
is a powerful way to measure the activity of large popu-
lation of neurons on a realistic timescale, but it only
provides a field-of-view of a few millimeters squared. Our
conclusions therefore can only be applied to the most
caudal aspect of the PFC in monkeys. Second, there is a
significant amount of variation from session to session in
the behavioral performance of the monkeys. On the sta-
tistical level, this variability makes it difficult to detect
behavioral effects of MPH since the small effects of the
drug could be masked by normal, random day-to-day
variations in behavioral performance. This normal varia-
tion in the performance of monkeys is not a problem
specific to the current study, but is rather characteristic of
the work with those highly intelligent animals who can be
motivated, or distracted, by many difficult to control fac-
tors.

On this note, Soto et al. (2013) provide an important
warning regarding potential statistical flaws when using a
best-dose analysis to identify the optimal dose of a
cognitive-enhancing drug on a subject-by-subject basis.
We took precautions to prevent such flaws by retesting
every dose three times in each animal. We are confident,
nonetheless, that our drug administration procedure was
reliable given that the water-controlled monkeys always
consumed the juice containing the drug entirely and im-
mediately when given. Therefore, regardless of the results
of the behavioral analyses on task performance, we are
confident that various doses of MPH, including clinically
relevant doses, were administered systematically to our
subjects. In other words, the neurophysiological study of
MPH could be performed even without performance of a
behavioral task and yield important insights on its mech-
anism of action. This is the reason why we also analyzed
the neurophysiology of sessions where no behavioral ef-
fects of the drug were observed.

On the neurophysiological level, one could argue that it
would have been preferable to administer a placebo fol-

lowed by the drug within each recording session to pro-
vide a within-session comparison of placebo and MPH on
both behavioral and neuronal levels. Although we agree
that this is a possibility, we want to point out that this
within-session method permits only comparing MPH to
placebo when MPH came second after placebo within a
session, and not when MPH came before placebo, which
is a major methodological problem. The second order of
administration (1st: MPH, 2nd: PLB) is impracticable due
to the long half-life of MPH (Volkow et al., 1995) which
would have contaminated the placebo condition if re-
corded in the same day. Counterbalancing the order of
administration of drug and placebo in a within-subject
design is crucial. For example, the performance of mon-
keys usually decrease within a session as their motivation
wears down when they become gradually satiated with
the reward. The within-session design would not have
allowed to control for those major confounding variables,
whereas our between-session design did. What our de-
sign failed to achieve is a better statistical power associ-
ated with paired statistical tests when comparing a
neuron to itself under various drug conditions (using a
paired t test for example). In our design, the large inter-
neuronal variability could only be counter-balanced by
larger neuronal sample sizes. It could be, also, that the
effects of MPH are noticeable only in certain neuronal
types. This is not something our analyses could have
detected, unfortunately.

In conclusion, we propose that future research investi-
gates the neurophysiological effects of MPH in the mon-
key brain by exploring other areas of the PFC, as well as
other areas of the attentional network, such as the stria-
tum and the posterior parietal lobe (e.g., the lateral intra-
parietal area). We do advise investigators, however, that
these future neurophysiological studies should be con-
ducted using multielectrode recording technologies. From
what we currently know of basic attention mechanisms in
the brain, correlated noise between neurons appears to
be the main modulator of attentional processing at the
cellular level. This correlated noise can only be detected
by recording from many neurons simultaneously, and
might be the primary target of MPH. We also propose that
a dialogue should be maintained between rodent and
monkey researchers to find better ways to translate neu-
rophysiology results across animal models and build
bridges between those scientific communities.
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