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High stimulus rates usually result in a reduction of neuronal responses that can be described as suppression

or adaptation. It remains unclear how neuronal suppression influences sensory processing in animals that

rely on high stimulus rates, as it is the case of bats. The present study investigates how natural echolocation

sequences are processed in the bat’s inferior colliculus (IC). We report that collicular suppression enhances

the signal-to-noise ratio of the spiking activity without degrading the temporal processing of echolocation

sequences. Collicular suppression allows for a high tracking ability of the stimulus envelope and for the
kparallel processing of multiple auditory streams. /

ignificance Statement

Abstract

For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes
arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC)
represents an important auditory stage for initial processing of echolocation signals. The present study addresses
the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach
flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process
complex echolocation sequences containing echo information from multiple objects (multiobject sequence)?
Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species
Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal
responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated
and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In
contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression
sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units’
responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded
to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level.
Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel

processing of multiple acoustic streams.
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Introduction

The sensory world is dynamic and animals continuously
receive sensory information from the environment. The
temporal context, in which stimuli occur often carries
behaviorally relevant information. Temporal parameters,
like repetition rate, signal duration, or inter-signal inter-
vals, are used to identify conspecifics, a strategy that has
been described in Drosophila (Coen et al., 2014), crickets
(Ronacher et al., 2015; Hedwig, 2006), and frogs (Feng
et al., 1990; Gerhardt, 2005). Bats also rely on fast acous-
tic repetition rates for coping in everyday life scenarios.
They orientate acoustically in the dark using echolocation
by integrating high acoustic rates of call-echo information
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(Moss and Surlykke, 2010; Simmons, 2012; K&ssl et al.,
2015). Although fast acoustic repetition rates are impor-
tant for many animal species, encoding these fast time-
varying signals is challenged by the fact that repetitive
stimuli often degrade temporal processing along the
auditory pathway by evoking neuronal suppression
from the auditory nerve on (Harris and Dallos, 1979;
Wiggs and Martin, 1998; Joris et al., 2004; Grill-Spector
et al., 2006).

To unravel fundamental principles of temporal process-
ing, it is important to stimulate animals with ethologically
relevant stimuli in a natural temporal context (Margoliash
and Fortune, 1992; Carruthers et al., 2013; Woolley and
Portfors, 2013; Theunissen and Elie, 2014; Beetz et al.,
2016a). The present study tested, neuronal processing of
natural sound sequences, with special focus on the rele-
vance of a natural temporal context, in the inferior collicu-
lus (IC) of the frugivorous bat Carollia perspicillata. The 1C
is considered an important structure for the processing of
temporal sound attributes. Collicular neurons are often se-
lective to stimulus parameters such as interaural intensity
and time differences (Klug et al., 1995), sound duration
(Casseday et al., 1994), frequency modulation (Casseday
et al., 1997), amplitude modulation (Borina et al., 2008), as
well as spectral and temporal sound combinations (com-
bination sensitive neurons; Wenstrup et al., 2012). The
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increased neuronal selectivity in collicular neurons, com-
pared to the rather unselective neuronal responses of the
auditory brainstem, makes the IC an important center for
the extraction and integration of sensory stimuli features
(Casseday and Covey, 1996; Wenstrup et al., 2012).

We used bats as a model to study the processing of
sound sequences, because these animals have to cope
with fast time-varying acoustic streams in everyday situ-
ations. During echolocation, bats emit high-frequency
biosonar calls in a repetitive manner. The calls reflect off
surrounding objects resulting in echoes. Bats use echoes
to detect, localize, and identify objects thus creating an
acoustic image of the surrounding (Neuweiler, 1990; Moss
and Surlykke, 2010; Kdssl et al., 2014; Wohlgemuth et al.,
2016). They infer the distance to objects from the echo
delay, which represents the time interval between call
emission and echo arrival (Hartridge, 1945; Simmons,
1973). Neurons involved in distance processing respond
selectively to call echo pairs, in which the echo follows the
call with a certain delay (Grinnell, 1963a; Feng et al., 1978;
Suga et al.,, 1978; Suga and O’Neill, 1979; Hagemann
et al.,, 2010).

Neurophysiological studies in bats revealed that the
stimulus repetition rate affects neuronal tuning. Neurons
become more selectively tuned to sound duration (Zhou
and Jen, 2006), sound frequency (Jen et al., 2001; Small-
ing et al.,, 2001), echo delay (O’Neill and Suga, 1982;
Wong et al.,, 1992; Bartenstein et al., 2014), amplitude
(Galazyuk et al., 2000), and azimuthal position (Wu and
Jen, 1996), when the stimuli are presented at high rates.
The aforementioned studies investigated the effect of the
stimulus rate on the neuronal tuning by stimulating bats
with echolocation sequences composed of constant
inter-call interval. However, in real life scenarios, physical
parameters like inter-call interval, call duration and the
spectral composition of the calls vary during an echolo-
cation sequence (Griffin, 1953; Neuweiler, 1990). Thus, to
understand the neuroethological roles of the auditory cen-
ters involved in processing echolocation signals, it is nec-
essary to investigate neuronal processing with natural
echolocation sequences. So far, processing of natural
echolocation sequences has been characterized in the
superior colliculus of the insectivorous bat Eptesicus fus-
cus (Wohlgemuth and Moss, 2016) and in the auditory
cortex (AC) of C. perspicillata (Beetz et al., 2016a,b).
Cortical results have shown that the natural temporal
context evokes neuronal suppression which results into a
high neuronal selectivity to particular call echo pairs
(Beetz et al., 2016a) or to object-specific echo information
(Beetz et al., 2016b). However, it remains largely unknown
whether the response of subcortical neurons displays a
sharper echo-delay selectivity when studied with natural
echolocation sequences.

Materials and Methods

Animals

Electrophysiological recordings from the IC were per-
formed in six adult females of the frugivorous bat C.
perspicillata. Bats were taken from a breeding colony at
the Institute for Cell Biology and Neuroscience (Goethe-
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University). The animal use in this study complies with all
current German laws on animal experimentation and it is
in accordance with the Declaration of Helsinki. All exper-
imental protocols were approved by the Regierungspra-
sidium Darmstadt (experimental permit #F104/57).

Acoustic stimuli

Frequency-level receptive fields were calculated from
neuronal responses to pure tones of 10-ms duration
(0.5-ms rise-fall time) whose frequency and intensity was
varied. Sound frequencies ranged from 5-95 kHz (5-kHz
steps) and the sound pressure levels were between 30- and
90-dB SPL (10-dB steps). Sound levels were adjusted based
on the speaker’s calibration curve. Each frequency-level
combination was randomly presented five times with a
400-ms interstimulus interval.

Natural echolocation sequences were recorded in a
pendulum (Henson et al., 1982; Beetz et al., 2016a,b). The
bat was placed in a pendulum and swung toward different
objects. During the swing, the animal broadcasts echolo-
cation calls. The calls and echoes, arising from call reflec-
tions from the surrounding objects, were recorded with an
ultrasound sensitive microphone (CM16/CMPA, Avisoft
Bioacoustics). The microphone was attached to the pen-
dulum and positioned medially above the animal’s head.
The distance between the animals’ ears and the micro-
phone membrane was set to 4 cm. The microphone had a
sensitivity of 50 mV/Pa and an input-referred self-noise
level of 18-dB SPL. Sound signals were acquired with an
UltraSoundGate 116 Hm mobile recording interface (Avi-
soft Bioacoustics, RRID: SCR_014436) and a sampling
rate of 375 kHz (16-bit precision).

For the present study, two representative echolocation
sequences recorded in the pendulum were used as
acoustic stimuli for electrophysiological recordings. Both
sequences were recorded during the forward swing of the
pendulum. The pendulum swung at an average speed of
3 m/s (speed calculated as the total x-axis displacement/
time). Note that during an approach flight the velocity of
C. perspicillata ranges between 2 and 3 m/s (Thies et al.,
1998). For the first sequence (Fig. 1A-E, simple echolo-
cation sequence), the bat was swung toward an acrylic
glass wall (depth: 0.3 cm; width 50 cm; height: 150 cm).
Each echolocation call was reflected once at the acrylic
wall. Thus, each call was followed by an echo with a
distance-dependent time delay (defined as echo delay).
Echo delays decreased from 22.8 to 1.1 ms, which cor-
respond to distance changes from 3.9 to 0.17 m (Fig. 1C).
Echolocation sequence parameters fell within the natural
range of C. perspicillata (Table 1; Thies et al., 1998).
Consistent with findings in freely flying bats (Thies et al.,
1998), the call duration decreases as the bat approaches
the object in the pendulum paradigm (Fig. 1A).

For recording a multiple-object sequence (Fig. 1F-/),
three objects were positioned along the swing trajectory.
Object A was a dummy rock (depth: 65 cm; width 95 cm;
height: 35 cm) made of papier-maché and it was over-
flown by the animal at time point t = 450 ms (Fig. 1H,
dashed vertical line). Object B, a wooden plate (depth:
0.8 cm; width: 21 cm; height: 21 cm) was positioned
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Figure 1. Natural echolocation sequences used as acoustic stimuli. Two representative echolocation sequences recorded during a
forward swing of the pendulum. A-E, Energetic, spectral, and temporal parameters characterizing the simple echolocation sequence.
The sequence contains echo information from one object (acrylic glass wall positioned at the end of the swing). A, Call duration (black
trace) and call interval (gray trace) over the time course. Call durations and intervals decrease toward the end of the swing. B, Call
intensity is independent from object distance and varies between 67 and 82-dB SPL. Echo intensity increases during the approach
from 41-to 82-dB SPL. C, Echo delays decrease over time. Oscillogram (D) and spectrogram (E) of the simple echolocation sequence.
F-H, Same plots as in B-E but with physical parameters from the multiple-object sequence. During the swing the bat faced three
objects. Thus, each call was followed by at least two echoes coming from different objects. Object A is overflown by the animal
between 400 and 450 ms. Therefore, echolocation signals after 450 ms do not contain echo information from object A.

0.2 0.3

130 cm after object A and 20 cm in front of object C.
Object C was the acrylic glass wall from the simple
echolocation sequence. The swing of the pendulum
stopped directly in front of object B. The objects were
positioned so that each echolocation call was followed
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by at least two echoes. One echolocation call was
followed by echoes from all three objects (i.e., call #8 at
t = 0.39 s; Fig. 1H). The recorded echolocation se-
quences were resampled from 375 kHz to 384 kHz. The
“noise reduction” function (FFT length 256; precision

eNeuro.org



eMeuro

New Research 5 of 20

Table 1. Temporal call parameters of the echolocation sequences, used in the present study, are compared with call

parameters measured in the field (from Thies et al., 1998)

Call duration (ms)

Simple echolocation sequence 0.79 £ 0.15
Multiobject sequence 1.29 = 0.25
Freely flying (from Thies et al., 1998) 0.8 +=0.2

Call interval (ms) Duty cycle (%)

40 = 14.85 2 *0.56
49.33 + 20.9 3.06 = 1.14
42.2 = 25.8 2411

16) of the software Avisoft SAS Lab Pro (Avisoft Bioa-
coustics, RRID: SCR_014438) filtered background
noise in the frequency domain. The spectro-temporal
structure of call and echoes were not affected due to
the high signal-to-noise ratio of the recording. An ellip-
tic filter (order 8) in the software BatSound (Pettersson
Elektronik AB) eliminated the remaining sound artifacts
from background noise.

For investigating the relevance of the stimulus history,
the simple echolocation sequence was cut into segments
using a custom-written Matlab script (R2009, RRID:
SCR_001622). Each segment contained a call and an
echo. In the rest of the manuscript, we will refer to the
segment as “call-echo elements.” The call-echo elements
were randomly presented with a 400-ms interstimulus
time interval, from here on called “element situation.” The
neuronal response to the element situation was compared
with the response elicited by the natural echolocation
sequence, from here on called “sequence situation.”

The multiple-object sequence was transformed into
single-object sequences by manually deleting object-
specific echoes in the software BatSound (PettersonElek-
tronik AB). According to the distances to objects, the
echoes from object A and B should be separated by 7.65
ms. Echoes from object B and object C should be sepa-
rated by 1.2 ms. Calculations are based on the equation:

- ¢
R—D><2

R represents the distance, D the echo delay and c the
sound velocity in air at 20°C. In our multiple-object se-
quence, echoes from object A and object B were sepa-
rated by 6.7 £ 0.9 ms and echoes from object B and
object C by 5.3 £ 0.2 ms. The discrepancy of the echo
delays between the echoes of object B and object C
might be because echoes from object C could derive from
the off-axis of the sonar beam. Thus, echoes from object
C had to cover longer distances than echoes from object
B. Echoes from different objects did not temporally over-
lap, which allowed us to delete object-specific echoes.

For stimulation, acoustic signals were played using an
Exasound E18 sound card (ExaSound Audio Design) at a
sampling rate of 384 kHz. To avoid sound artifacts, such
as clicks during stimulation, the acoustic stimuli were
multiplied by a fading function resulting in smooth rise-fall
times of 0.5 ms. The acoustic stimuli were transferred to an
audio amplifier (Rotel power amplifier, RBgs), before they
were played through a calibrated speaker (ScanSpeak Rev-
elator R2904/7000, Avisoft Bioacoustics). The speaker was
located 15 cm from the bat’s right ear. Speaker calibration
was done with a %-inch microphone (Briel & Kjaer, model
4939) connected to a custom-made microphone ampilifier.

November/December 2017, 4(6) e0314-17.2017

While recording neuronal signals from the left IC, the
sequence situation, the element situation, the multiple-
object sequence, and the multiple-object sequences with
deleted echoes were presented 15 times with an inter-
stimulus interval of 400 ms to an anaesthetized bat.
Sound pressure levels of calls and echoes are plotted in
Figure 1B,F for the simple echolocation sequence and
multiple-object sequence, respectively.

Electrophysiological recordings

For anesthesia, bats were subcutaneously injected with
a mixture of ketamine (10 mg/kg " Ketavet, Pharmacia GmbH)
and xylazine (38 mg/kg~' Rompun, Bayer Vital GmbH). A
local anesthetic (xylocaine 2%, AstraZeneca GmbH) was
applied topically onto the skin of the bat’s head. A longi-
tudinal midline cut was made through the skin. Skin and
muscles covering the skull were removed. For fixating the
bat’s head during the recordings, a custom-made metal
rod (1-2 cm in length, 0.1 cm in diameter) was glued with
acrylic glue (Heraeus Kulzer GmbH), super glue (UHU),
and dental cement (Paladur, Heraeus Kulzer GmbH) at the
rostral end of the skull. After two recovery days from
surgery, a craniotomy covering an area of 1 mm? above
the midbrain was done to gain access to the left IC.

Electrophysiological recordings were conducted in a
sound-proofed and electrically-shielded chamber. During
anesthesia, the temperature of the bat holder was kept
constant at 37°C with a heating pad positioned below the
immobile bat. Neuronal recordings were performed using
single glass electrodes (resistance 4-10 MQ when filled
with 3 Mol KCI) which were constructed by pulling boro-
silicate capillaries (GB120F-10, Science Products) with a
Flaming/Brown horizontal puller (P97, Sutter). Glass elec-
trodes were positioned 2-3 mm lateral from the midline of
the scalp. A prominent blood vessel running dorsally over
the rostral cerebellum was used as landmark for deter-
mining the rostro-caudal position of the IC. The electrode
was penetrated orthogonally to the brain surface, through
an intact dura mater. Recording depths were measured
with a Piezo Manipulator (PM 10/1, Science products
GmbH). The brain surface was used as reference point (0
wm) for depth measurement and the recording depths
ranged from 610 up to 6210 um. A silver wire, placed 1-2
cm rostral from the recording electrode and touching the
brain surface of nonauditory areas, was used as ground-
ing electrode. Neuronal data acquisition was performed
using a wireless multichannel recording system (Multi
Channel Systems MCS GmbH), at a sampling rate of 20
kHz (per channel) and 16-bit precision. One channel of the
multichannel recording system was connected to the re-
cording electrode while the remaining channels were
short-circuited and connected to ground. One recording
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session lasted on average 4 h. Recordings were per-
formed chronically in each animal. After each recording
session, the animal had at least one day for recovery. The
health status of the animal was documented with health
reports, including daily weight measurements.

Analysis of neuronal recordings

Spike events were detected with a multiunit-specific
threshold that was based on the spike amplitude. For each
multiunit, spike threshold was kept constant throughout the
stimulation protocol, thus ensuring that the same multiunit
activity was recorded for each stimulus. Spike detection was
based on spike amplitude relative to recording noise level.
The spikes were sorted based on the first three principle
components of the spike waveforms and they were clus-
tered automatically using the KlustaKwik algorithm (Lewicki,
1998, RRID: SCR_014480). Only the cluster with the largest
number of spikes was used for further analysis. Neuronal
responses from the IC were analyzed in 90 spike-sorted
single units.

Initially, the characteristic frequency (CF), which repre-
sents the frequency to which the neuron is most sensitive,
was calculated for each unit. Neuronal responses to the
echolocation sequences were assessed from units with
CFs higher than 35 kHz (n = 79). Neuronal data from 149
cortical units from a previous study (Beetz et al., 2016a)
were used and compared to the IC data.

A suppression rate calculated with the following equa-
tion was calculated for each unit:

# spikes(sequence situation)
# spikes(element situation)

suppression rate = 1 —

Unless otherwise mentioned, IC data were analyzed
with poststimulus time histograms (PSTHs) with a binsize
of 2 ms. The tracking ability of the units was assessed by
cross correlating the PSTHs with the down-sampled en-
velope of the stimulus energy. Note that the PSTH binsize
used for the cross-correlation (CC) was 1 ms for collicular
and cortical units.

The calculation of the signal-to-noise-ratio was based
on normalized PSTHs. PSTHs were normalized in a unit-
specific manner, relative to each unit’s maximum spike
count per bin when considering both the element and
sequence situations. To distinguish between stimulus
evoked responses (signal) and background activity (noise), a
threshold was set to 50% of the maximum value of the
normalized PSTHs. Bins crossing that threshold were
defined as the “signal” and compared to the remaining
bins that represent the “noise.” The signal-to-noise ratio
of a call-echo element represents the sum of the number
of spikes in bins defined as signals divided by the total
number of spikes elicited by that call-echo element. Thus,
a signal-to-noise ratio of 1 indicates that each spike elic-
ited in response to the call-echo element, was assigned to
a signal and that the noise level was zero. A signal-to-
noise ratio was quantified for the responses to each call-
echo element. For obtaining a unit specific signal-to-noise
ratio, we calculated the median values of the signal-to-
noise ratios calculated in response to each call-echo
element.

November/December 2017, 4(6) e0314-17.2017
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Because of the variable inter-call intervals of the
echolocation sequence, conventional PSTHs with con-
stant bin-sizes could not be used to assess the tuning
of the collicular units to specific call-echo elements.
Therefore, “activity histograms” were calculated by as-
signing each spike according to its relative time point to
the preceding call-echo element. In other words, activ-
ity histograms represent PSTHs with variable binsizes
that correspond to the time window of the call-echo
elements.

To describe delay tuning, two different parameters were
calculated. The best delay represents the echo delay
(represented by call-echo elements) that elicits the stron-
gest response. The median delay was calculated by mea-
suring the median time point of the evoked spikes. The
median time point was then assigned to a call-echo ele-
ment. The echo delay, encoded by the call-echo element,
represents the median delay. In contrast to the best delay
calculation, the median delay calculation considers each
elicited spike. Data analysis was done in Matlab 2014
(MathWorks), and statistics in GraphPad Prism 5 (Graph-
Pad Software; #p < 0.05; ##p < 0.01; #=+xp < 0.0001,
RRID: SCR_002798).

Results

Tonotopy

Extracellular recordings were obtained from 90 auditory
sensitive and spike-sorted single units from the central
nucleus of the IC (cIC) of C. perspicillata. Recordings were
from the clC because a clear tonotopy was found along
the dorso-ventral axis, which is characteristic for the cIC
(Fig. 2; Grinnell, 1963b; Pinheiro et al., 1991; Schmidt
et al., 1991; Sterbing et al., 1994; Jen and Chen, 1998).
We determined each unit’s CF based on its frequency
receptive field (Fig. 2B). The CF represents the frequency
to which the unit is most sensitive (Fig. 2B, white stars).
Recording depths were calculated for 85 units and plotted
against the CF (Fig. 2C). A Spearman CC analysis and
linear regression depict that the CF increased with in-
creasing recording depth [R = 0.56, f(x) = 21.13x + 1.06;
p < 107°]. Note that the neurons show a multipeaked
receptive field with increasing depth (Fig. 2B). Thus, high-
frequency tuned neurons of the IC receive excitatory input
from low (<35 kHz) and high frequencies (>35 kHz).
Multipeaked receptive fields have been described for a
relatively lower number of neurons in the IC of the mus-
tached bat (Holmstrom et al., 2007), E. fuscus (Casseday
and Covey, 1992), and Myotis oxygnathus (Vasil’ev and
Matyushkin, 1967). In the AC of C. perspicillata, high-
frequency tuned neurons are also multipeaked in C. per-
spicillata (Hagemann et al., 2010; Hagemann et al., 2011).

In comparison to communication signals, echolocation
calls have their main energy at high frequencies (Hechavarria
et al., 2016a). Therefore, we tested neuronal responses to
natural echolocation sequences (see sequences in Fig. 1)
only in neurons with CFs higher than 35 kHz (Fig. 2D, 79
units positioned to the right of the dashed line). The remain-
ing eleven units were defined as low frequency tuned neu-
rons and were not taken into consideration for the remaining
analysis.
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Figure 2. Tonotopy of the cIC in C. perspicillata. A, Schematic frontal view on the cIC. CFs increased with recording depth. B,
Representative frequency receptive fields from six units recorded from different depths of one penetration track. Depths are indicated
by roman numerals (I-VI; A). The CFs of the units are indicated by white stars in the receptive fields and increase with the recording
depths. High-frequency tuned neurons typically had multipeaked frequency receptive fields. C, Scatter plot shows the increase of the
CF along the recoding depth for 85 collicular units. D, Histrogram represents the distribution of CFs from 90 collicular units recorded
in the present study. Units with CFs higher than 35 kHz (dashed vertical line) were classified as high-frequency tuned units and were

tested further with the echolocation sequences from Figure 1.

Suppression at IC level is weaker than at the cortical
level

We analyzed neuronal responses from 79 collicular
units that were recorded while the bats were listening to
an echolocation sequence [sequence situation; black ras-
ter and PSTH (binsize = 2 ms) in Fig. 3A]. The sequence
mimicked a stimulus scenario that the bat could perceive
when flying toward an object. To quantify the influence of
the temporal context of the sequence on the neuronal
response, the bats were also stimulated with the tempo-
rally isolated call-echo elements of the sequence. Tem-

November/December 2017, 4(6) e0314-17.2017

poral isolation means that the call-echo elements were
randomly presented with a 400-ms interelement interval
(element situation; black and gray raster and gray PSTH in
Fig. 3A). In comparison to the results from the cortex (Fig.
3B), the responses of IC units were less suppressed in the
sequence situation (Fig. 3A) when compared to the ele-
ment situation. Neuronal data from 79 collicular and 149
cortical units (database of cortical units based on Beetz
et al., 2016a) demonstrate that the suppression is signif-
icantly weaker in the IC than in the cortex (Fig. 3C;
median: 0.46 and 0.81 for IC and cortex, respectively;
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Figure 3. Collicular neurons synchronize more their discharges to the stimulus envelope than cortical neurons. A, Neuronal response
from a representative unit of the IC. Median (black trace), 25th, and 75th quantile (gray traces) spike wave form is shown in the left
upper corner. Stimulus envelope and oscillogram of the stimulus are shown below. Two call-echo elements of the stimulus envelope
are magnified on top. Neuronal responses are shown as raster plots, where one dot indicates an action potential, and as PSTHSs. In
the sequence situation (Seq), the animals were stimulated with the natural echolocation sequence. In the element situation (Ele) single
call-echo elements of the sequence were randomly presented with a 400-ms interstimulus time interval. The time borders of the
call-echo elements are indicated by gray vertical lines in the oscillogram. For visualization, the raster plot of the element situation was
created by concatenating the neuronal responses to the call-echo elements. Alternating gray scales visualize which action potentials
were evoked by which call-echo element. B, Neuronal response from a unit of the AC to the sequence and element situation. Raster
plots and PSTHSs are organized as in A, except that the binsize of the PSTH was adjusted to 5 ms. C, Boxplot and histogram of the
suppression rates in the IC and AC. In the sequence situation, IC units were less suppressed than AC units (Mann-Whitney t test: p <
10~%). D, Boxplots showing the CC values calculated between PSTHSs, with a binsize of 1 ms, and the stimulus envelope. In the IC
(black boxplots), the CC values did not differ between the element and sequence situation (p > 0.05), indicating that subcortical
suppression prevails the neuronal synchronization to the stimulus envelope. CC values from the AC (gray boxplots) were significantly
smaller than in the IC (p < 10~°) and decreased further from the element to the sequence situation (o < 10~°). Wilcoxon signed rank
test for testing between stimulus conditions and Kruskal Wallis one-way ANOVA and Dunns multiple comparison post hoc test for
comparing between IC and AC. E, Scatter plot shows that in AC (gray circles) the suppression rate was correlated with the decrease
of neuronal synchronization from the element to the sequence situation (Spearman: r = —0.45; p < 1075, f(x) = —0.34x + 0.21). No
correlation between the suppression rate and changes in neuronal synchronization was found in the IC (black circles; Pearson:
r=-0.02; p = 0.87).

November/December 2017, 4(6) e0314-17.2017 eNeuro.org



eMeuro

Mann-Whitney t test: p < 107°). The suppression was
quantified based on a suppression rate that is calculated
as the ratio of evoked spikes in the sequence and element
situations, and by subtracting that ratio from 1 (for details
see Materials and Methods). Note that the IC was not free
of suppression which is reflected by suppression rates
that differed significantly from O (Sign test: p = 2.6 X
10722,

The time course of the echolocation sequence was
more accurately represented by IC than AC neurons (Fig.
3A,B, example raster plots). To evaluate the neuronal
synchronization to the acoustic events of the echoloca-
tion sequence in the sequence situation, the PSTHSs (bin-
size = 1 ms) in response to the element and sequence
situation were cross-correlated with the stimulus enve-
lope. High CC values indicate a high neuronal synchroni-
zation and a high tracking ability of the neurons. In the IC,
the CC values did not differ significantly between the
element and sequence situation indicating that suppres-
sion at the IC did not affect the neuronal synchronization
(Fig. 3D; median: 0.45 and 0.43 for element and sequence
situation, respectively; Wilcoxon signed rank test: p =
0.86). In contrast to the IC, cortical neurons less synchro-
nized their discharges to the stimulus envelope. CC val-
ues calculated for cortical neurons were significantly
lower than the CC values from IC neurons (median: 0.45
and 0.43 for IC and 0.26 and 0.18 for cortex; Kruskal
Wallis one-way ANOVA and Dunns multiple comparison
post hoc test: p < 107°). For the cortical neurons, CC
values were significantly higher in the element than in the
sequence situation (Wilcoxon signed rank test: p < 107°).
The degradation of neuronal synchrony was based on the
cortical suppression, which is indicated by a negative
correlation between suppression rate and CC values [Fig.
3E; Spearman: r = —0.45; p < 1075; f(x) = —0.34x +
0.21]. At the level of the IC, no correlation was found
between the suppression rate and tracking ability (Pear-
son: r = —0.02; p = 0.87).

Collicular suppression increases signal-to-noise
ratio

Population activity maps from the IC illustrate the effect
of collicular suppression on the neuronal response to the
echolocation sequence (Fig. 4A, lower panel, B). In the
heatmaps, each row represents a normalized PSTH from
one collicular unit. Each acoustic event is reliably repre-
sented in the response patterns obtained from the ele-
ment (Fig. 4A) and sequence situation (Fig. 4B). However,
the neuronal response to the sequence was weaker,
than the response to the element situation, as indicated
by the lighter activity pattern in the heatmaps. The time
course of suppression was visualized by subtracting
the population activity map of the element situation
from that obtained in the sequence situation (Fig. 4B —
Fig. 4A = Fig. 4C). High suppression rates are indicated
by bright spots (negative values) in Figure 4C. Suppres-
sion occurred mainly during and briefly after neuronal
excitation, as postexcitatory suppression. The latter
can be seen when comparing the median PSTHs in
response to the sequence (Fig. 4E, black traces) and
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element situations (Fig. 4D). The suppression resulted
in decreased neuronal activity peaks (compare maxi-
mum amplitudes at Fig. 4D,E). The postexcitatory sup-
pression lowered the median spike rate to zero in some
cases (Fig. 4D,E, arrow). In response to the element
situation, the spiking activity rarely dropped to zero.
The postexcitatory suppression increased the signal-to-
noise ratio in the sequence compared to the element
situation (Fig. 4F; median signal-to-noise ratios: 0.33 and
0.17 for sequence and element situation, respectively;
Wilcoxon signed rank test: p < 107°).

Collicular suppression sharpens tuning to specific
call-echo elements without changing tuning
preference

Next, we tested the influence of collicular suppression
on the neuronal tuning to call-echo elements of the echo-
location sequence. To assess the neuronal tuning to the
call-echo elements, each spike recorded in the sequence
situation was assigned to the call-echo element that
putatively evoked the spike (procedure shown for one
example unit in Fig. 5A). Each call-echo element was
associated to a time window that lasted from call onset to
the following call (colored, horizontal bars in Fig. 5A rep-
resent endpoints of each call-echo element). By using the
time windows and the spike time points, each spike was
assigned to a call-echo element. For instance, spikes
occurring during the first time window (Fig. 5A, initial
green spikes) were elicited by the first call-echo element.
The subsequent blue spikes were putatively evoked by
the second call-echo element, and so on. For visualiza-
tion, alternating green and blue spikes indicate the corre-
sponding call-echo elements to which the spikes were
assigned to. Based on the spike assignment, the PSTHs
could be transformed into activity histograms (Fig. 5A, low
panels). The activity histograms of all collicular units were
represented as a color-coded population activity map
(Fig. 5B,C). The calculated call-echo element activity
maps showed a clear selectivity toward certain call-echo
elements. Strong neuronal activity was elicited by the
call-echo elements representing intermediate to long
echo delays (9-20 ms; Fig. 5B,C). Note that the units were
sorted in descending order according to the call-echo
element eliciting the highest spike rate in response to the
sequence situation. Long-delay tuned neurons were po-
sitioned at the top and short-delay tuned neurons at the
bottom of the activity maps in Figure 5B,C. In the se-
quence situation, collicular suppression lowered the neu-
ronal activity (Fig. 5C, brighter, more yellowish color).
Suppression also sharpened the neuronal tuning to cer-
tain call-echo elements. The sharpening did not signifi-
cantly change the best delays of the collicular neurons
when considering all recorded collicular units (Fig. 5D;
Wilcoxon signed rank test: p = 0.13). In contrast, median
delays shifted significantly toward longer delays, indicat-
ing that the response to long delays was less suppressed
than the response to short delays. In other words, the
strength of suppression increased over time during the
stimulus presentation, in some neurons (Fig. 5E; Wilcoxon
signed rank test: p < 10 °). Note that the median delay did
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Figure 4. Collicular suppression increases signal-to-noise ratio. A, top, Oscillogram of the stimulus. Vertical gray lines define the time
borders of the call-echo elements. Bottom, Population activity map in response to the element situation. Normalized PSTHs were
transformed into grayscale coded activity maps. Neuronal activity from each unit is represented in a single row. B, Population activity
map in response to the sequence situation. C, Population suppression map calculated by subtracting population activity map in
response to the element situation (A) from the map calculated in response to the sequence situation (B). Respectively, bright and dark
bins represent high and weak suppression rates. D, E, Median PSTHs calculated form the response to the element (D) and sequence
(black PSTH; E) situation. The time course of the median suppression is plotted in gray. Note that strong suppression occurs during
and directly after high activity rates. The latter suppression reduces the postactivity to zero (black arrows). F, Boxplots showing the
increase in the signal-to-noise ratio in the sequence situation compared to the element situation. Wilcoxon signed rank test: p < 1075,
norm, normalized; SNR, signal-to-noise ratio.

not change in 39% of the units indicating that collicular ~ sequences containing echo information from multiple
suppression did not change delay tuning in all collicular  objects (Beetz et al., 2016b; Greiter and Firzlaff, 2017).

units. Neuronal responses to distant objects are usually sup-

pressed. Since the present study shows that collicular
In the IC, information from multiple objects can be suppression is weaker than cortical suppression, we were
processed in parallel interested in determining whether echo information from

Recent studies showed that cortical neurons process  multiple objects can be processed at the IC level. To
object information from one object (usually the nearest  address this question, the bats were presented with an
object) when the animals are stimulated with echolocation  echolocation sequence that contained echo information
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Figure 5. Collicular suppression sharpens neuronal tuning to call-echo elements. A, Oscillogram of the echolocation sequence. Neuronal
response of the example unit from Figure 3A is shown as raster plot and PSTH (binsize = 2 ms). To investigate neuronal tuning to certain
call-echo elements, each spike was assigned according to its time point to a call-echo element. Time windows used for spike assignments
to corresponding call-echo elements are indicated by alternatingly colored horizontal bars. The spikes assigned to a time window and thus
to a call-echo element are correspondingly color coded. The activity rate was plotted against the call-echo elements which can be
characterized based on their echo delay (x-axis). Note that, the depicted unit responded more strongly to long than to short delays, having
its maximum response at element #8 (best delay of 20 ms). B, C, Normalized population activity maps in response to the element (B) and
sequence (C) situation. Units were ordered along the y-axis according to their best delay calculated from the response to the sequence.
D, E, Boxplots and histograms represent the best delay (D) and median delay shifts (E), calculated by subtracting the best or median delay
in response to the element situation from the best or median delay in the sequence situation, respectively.
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from three objects (multiple-object sequence; Fig. 1F-).
The neuronal response was then compared with the
response evoked by stimulation with echolocation se-
quences containing echo information from one object
only (single-object sequence). Note that single-object se-
quences were obtained by manually deleting object-
specific echoes from the multiple-object sequence (see
Materials and Methods). Thus, single-object sequences
contain the same spectro-temporal information as the
multiple-object sequence, except for the missing echo
information from two out of the three objects. Seventy-
seven collicular spike-sorted single units, with CFs higher
than 35 kHz, were tested with the multiple-object se-
quence and each of the three single-object sequences.

Population activity maps and the median PSTH (binsize =
2 ms) show that each acoustic event evoked a neuronal
response when the bats were stimulated with the
multiple-object sequence (Fig. 6A) and with each single-
object sequence (Fig. 68B-D). The temporal bandwidth of
PSTHSs, obtained in response to the multiple-object se-
quence, was wider than the one obtained with single-
object sequences. The latter becomes obvious when
comparing the width of the activity peaks in the median
PSTHs with each other (Fig. 6A-D, PSTHs in the bottom
subpanels). The width of the activity peaks or the re-
sponse duration was calculated by autocorrelations of the
PSTHSs (shown for one example unit in Fig. 6E). Autocor-
relations were restricted to time lags of =20 ms. The
larger the area under the autocorrelation curve, the longer
is the response duration. The presence of three echoes,
instead of one echo, following each call increases the
response duration, indicating that the collicular unit en-
coded echo information from more than one object. At the
population level, the response duration was also signifi-
cantly longer when the bats were stimulated with the
multiobject sequence than with the single-object se-
quences (Friedman one-way ANOVA and Dunn’s multiple
comparison test: p < 107%; Fig. 6F).

A correlation between the PSTHs calculated in re-
sponse to each single-object and the multiple-object se-
quence allowed for a quantification of the influence from
each object on the neuronal response. Correlation values
were highest between PSTHs obtained in response to
object B (object B PSTHs) and PSTHs corresponding to
the multiple-object sequence (multiple-object PSTH; me-
dian correlation index: 0.57 object A, 0.62 object B, and
0.42 object C; Friedman one-way ANOVA and Dunn’s
multiple comparison test: p < 107> Fig. 7A). Thus, the
neuronal response to the multiple-object sequence
mostly resembles the response to the object B sequence.
This result is not surprising because object B contributes
more echoes to the multiple-object sequence (17 echoes)
than object A (eight echoes) or object C (seven echoes).
Thus, the highest stimulus similarity was already biased
toward object B in the multiple-object sequence. Note
that stimulus similarity does not exclusively account for the
differences in the calculated correlation values (Fig. 7A).
Object A and object C provide about the same number of
acoustic events to the multiple-object sequence. If the
correlation values were simply reflecting the amount of
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acoustic events, then object A and object C should com-
parably influence the response to the multiple-object se-
quence. However, object A PSTHs were more similar to
the multiple-object PSTH than object C PSTHs (Fig. 7A).
Note that the intensity of the echoes from object A were
usually higher than from object C. Therefore, intensity
driven influences cannot be excluded with the stimulus
setting used in the present study. Next, we determined
which of the three objects influenced most the multi-
object-evoked PSTH. The object resulting in the highest
correlation value was determined for each unit. As ex-
pected from the previous results, object B had the highest
impact in the response to the multiple-object sequence in
most neurons (73%; Fig. 7B). However, the multiobject
PSTH was most similar to the object A and object C
PSTHs in 27% and 1% of the units, respectively.

In the next step, we tested whether the collicular neu-
rons shifted their tuning preferences to the objects, during
the presentation of the multiple-object sequence. For
quantification, the PSTHs (binsize = 2 ms) were cut into
21 PSTH segments. Each PSTH segment contained 40
ms of neuronal activity. Note that the 40-ms time window
correspond to the time window used for the autocorrela-
tion analysis in Figure 6. Correlation values between the
segmented multiple-object PSTH and each segmented
single-object PSTH were plotted as boxplots as a function
of temporal position of each segment in the sequence
(Fig. 7C). Before passing object A at the 450-ms mark
(Fig. 7C, black vertical dashed line), object A most
strongly determined the neuronal response to the
multiple-object sequence. This is indicated by signifi-
cantly higher correlation values in five out of eleven PSTH
segments (Fig. 7C, depicted by an “A” above the box-
plots). After passing object A, only echoes from object B
and object C were present. In that situation, object B had
the strongest influence on the multiple-object PSTH, as
indicated by higher correlation values in seven out of ten
PSTH segments (Fig. 7C, depicted by a “B” above the
boxplots). Correlation values between the segmented ob-
ject C PSTH and the segmented multiple-object PSTH
were never significantly higher than the ones between the
segmented multiple-object PSTH and the segmented ob-
ject A and object B PSTHs. In summary, the initial 450 ms
of the response pattern to the multiple-object sequence is
predominantly determined by echo information coming
from object A. After passing object A, echoes from object
B have the strongest influence on the response pattern to
the multiple-object sequence. Although collicular neurons
responded to each echo of the multiple-object sequence,
collicular suppression ensures that echoes from the near-
est object are mostly determining the response pattern to
the multiobject sequence.

Discussion

In the auditory system, neuronal spikes are usually
synchronized to the stimulus envelope. Along the ascend-
ing auditory pathway, the cutoff frequency that can elicit
such synchronization decreases (for review see: (Joris
et al., 2004; Wang et al., 2008; Simmons and Simmons,
2011). When stimulating animals with acoustic rates
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object PSTH. Before passing object A, the multiple-object PSTH mostly resembled the object A PSTH. Thus, object A had the highest
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Kruskal-Wallis and Dunn’s multiple comparison post hoc test; #p < 0.05; *xp < 0.01; #*xp < 0.001.

higher than 40 Hz, cortical neurons are sometimes com-
pletely suppressed. Thus, neuronal suppression degrades
temporal processing of repetitive stimuli. With this in
mind, one could ask how neurons of animals that behav-
iorally rely on high repetition rates of sensory information
cope with such suppression effect? The present study
quantified the influence of the temporal context (present
in natural echolocation sequences) on the response of IC
neurons of bats. The echolocation sequences used by us
mimic a stimulus situation encountered by the bat when
approaching one or several target objects.

Neuronal suppression does not necessarily degrade
temporal processing

The cutoff frequencies of mammalian collicular neurons
are heterospecific and range between 10 and 1000 Hz

November/December 2017, 4(6) e0314-17.2017

[~100-150 Hz gerbils (Krishna and Semple, 2000), and
guinea pigs (Rees and Palmer, 1989), squirrel monkeys
(Mdaller-Preuss et al., 1994), ~200 Hz in rats (Rees and
Mgller, 1983), and ~1000 Hz in cats (Langner and
Schreiner, 1988)]. Cutoff frequencies of bat collicular neu-
rons range between 94 and 400 Hz [~100 Hz in Rinolo-
phus rouxi (Reimer, 1987) and ~94-400 Hz in M. lucifigus
(Condon et al., 1994)]. Overall, the results from previous
studies would suggest that bat IC neurons should be able
to synchronize their spiking to echolocation sequences in
which the repetition rate never reaches 100 Hz, as it is the
case in C. perspicillata. Our results confirm this prediction.
We show that collicular neurons of C. perspicillata syn-
chronize their discharges to the stimulus envelope of each
acoustic signal in the echolocation sequences (Fig. 3).
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Note that this result is contrasted by findings from studies
in the Mexican free-tailed bat, which show that some
collicular neurons respond selectively to particular
syllables of a communication sequence (Andoni and
Pollak, 2011). This discrepancy could arise from het-
erospecific effects or from using different types of
acoustic stimuli, i.e., echolocation compared to com-
munication signals.

Despite the neuronal synchronization in the IC of C.
perspicillata, the collicular neurons were suppressed in
the sequence situation. However, instead of degrading
temporal processing, collicular suppression improved tem-
poral processing by increasing the signal-to-noise ratio
(Fig. 4) and the neuronal selectivity to particular call-echo
elements (Fig. 5). In agreement with our results, numerous
studies have reported that subcortical neurons sharpen
their neuronal tuning with increasing repetition rates [IC:
Myotis lucifugus (Friend et al., 1966; Galazyuk et al.,
2000), E. fuscus (Pinheiro et al., 1991; Chen and Jen,
1994; Moriyama et al., 1994; Wu and Jen, 1996; Jen and
Chen, 1998; Jen and Zhou, 1999; Jen et al., 2001; Zhou
and Jen, 2001; Zhou and Jen, 2002; Sanderson and
Simmons, 2005; Wu and Jen, 2006; Zhou and Jen, 2006;
Jen and Wu, 2008); superior colliculus: E. fuscus (Valen-
tine and Moss, 1997; Wohlgemuth and Moss, 2016)].
Some studies even described repetition rate selective
neurons in the IC of insectivorous bats, like E. fuscus,
(Pinheiro et al., 1991; Sanderson and Simmons, 2005) and
M. lucifugus (Condon et al., 1994). Repetition rate or
inter-syllable interval selective neurons have been de-
scribed in different animals, including crickets (Zorovic
and Hedwig, 2011), fish (Crawford, 1997), frogs (Rose,
2014; Rose et al., 2015), and birds (Araki et al., 2016).
Crickets (Hedwig, 2006), frogs (Feng et al., 1990), and
presumably birds (Araki et al., 2016) identify conspecifics
by determining species-specific repetition rate or inter-
syllable interval of the acoustic signals. In bats, an im-
provement in temporal tracking with signal repetition rate
could be of advantage for information extraction during
echolocation. Some bat species increase their call rate
from 10-200 Hz during an approach flight that ends with
an insect capture (Simmons et al., 1979). Thus, specific
neuronal populations are excited at different hunting
stages (Jen and Schlegel, 1982; Condon et al., 1994). In
contrast to insectivorous bats, frugivorous bats such as
C. perspicillata change less dramatically their call rates
during echolocation [C. perspicillata (Thies et al., 1998),
Phyllostomus discolor (Linnenschmidt and Wiegrebe,
2016)]. During approach flights, C. perspicillata increases
the call rate from 12 = 19 to 24 = 39 Hz (Thies et al.,
1998). Although frugivorous bats change their call rates
less prominently than insectivorous bats, the former could
still profit from and enhanced temporal representation of
acoustic streams at the level of the IC.

Temporal selectivity increases from the IC to the AC

By using the same stimulus settings in the IC and AC
(Beetz et al., 2016a), it is possible to compare the influ-
ence of a natural temporal context in both brain areas for
the first time. Cortical neurons of C. perspicillata have a
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cutoff frequency of 20 Hz (Martin et al., 2017). To modu-
lation (Martin et al., 2017) or repetition rates (Beetz et al.,
2016a; Hechavarria et al., 2016b) higher than 20 Hz,
cortical neurons become suppressed and they respond
exclusively to certain call-echo elements (Beetz et al.,
2016a). The results from this study show that collicular
suppression is weaker than the cortical one (Fig. 3C) and
that main suppressive effects seen in the AC may arise at
the thalamus or cortex, as proposed by findings from
rodents (Wehr and Zador, 2005; Bayazitov et al., 2013).
Note that although suppression is weaker in the IC, the
time course of suppression is comparable between the
cortex and midbrain (for IC data, see gray trace in Fig. 4E).
Main suppressive effects occurred during or directly after
strong excitations. Postexcitatory suppression is com-
mon in the mammalian cortex (Suga et al., 1983; Joris
et al., 2004; Beetz et al., 2016a) and has also been de-
scribed in the IC of different bat species, including E.
fuscus (Covey et al., 1996), Tadarida brasiliensis mexicana
(Bauer et al., 2000), and M. lucifugus (Voytenko and Gala-
zyuk, 2007).

An increase of neuronal selectivity for temporal parame-
ters or specific vocalizations along the processing pathway
has been demonstrated in different animals, including crick-
ets (Schildberger, 1984; Zorovic and Hedwig, 2011; Ko-
starakos and Hedwig, 2012; Schéneich et al., 2015), fish
(Partridge et al., 1981), frogs (Rose and Capranica, 1983;
Feng et al., 1990), birds (Margoliash, 1986; Doupe and Koni-
shi, 1991; Lewicki and Arthur, 1996; Fujimoto et al., 2011;
Theunissen and Elie, 2014), and mammals (Wang et al.,
1995; Beetz et al.,, 2016a). Findings from the AC of rats
demonstrated that hearing selectivity is refined by selective
inhibition during development (Chang et al., 2005). The pres-
ent results from C. perspicillata indicate that hearing selec-
tivity along the ascending auditory pathway could be a least
partially shaped by time-dependent neuronal suppression.
We base this claim on the fact that neuronal selectivity to
particular call-echo elements was higher in the sequence
than in the element situation (present study and Beetz et al.,
2016a). The latter holds true for both the IC and AC, but
suppression does have the strongest effects at the level of
the AC.

Relevance of the stimulus history for neuronal
processing

The sensory world continuously changes and preced-
ing stimuli determine how subsequent stimuli are pro-
cessed (Brosch et al., 1999; Naatanen et al., 2001; Bartlett
and Wang, 2005; Dehaene et al., 2015). In birds, the
significance of stimulus history, represented by the tem-
poral context and stimulus order, has been widely dem-
onstrated in neurophysiological experiments. Neurons of
the auditory forebrain, respond most strongly to syllables
of the bird’s own song when presented in the natural
temporal context (Margoliash, 1983, 1986; Margoliash
and Fortune, 1992). The neurons respond less selectively
when presenting the syllables temporally isolated (Margo-
liash, 1983; Margoliash and Fortune, 1992), as in the
element situation of the present study, or when presenting
the bird’s song in a reversed manner (Margoliash, 1986;
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Margoliash and Fortune, 1992; Volman, 1996). In mice,
neurophysiological experiments demonstrated that corti-
cal neurons respond most strongly to ultrasonic vocaliza-
tions when the mice were stimulated with a natural temporal
context (Carruthers et al., 2013). In bats, the neuronal selec-
tivity to echolocation (present study and Beetz et al., 20163a)
and communication signals (Esser et al., 1997; Hechavarria
et al., 2016b) is also highest when stimulating with the
natural temporal context.

Although, presenting the call-echo elements in a
chronological order, in the present study, it is possible
that neuronal tuning could additionally depend on the
order of call-echo elements in the sequence. Order
selective neurons have been characterized in rats (Kil-
gard and Merzenich, 2002; Nakahara et al., 2004), birds
(Lewicki and Arthur, 1996; Doupe, 1997), and monkeys
(Ninokura et al., 2004; Yin et al., 2008; Sadagopan and
Wang, 2009; Berdyyeva and Olson, 2010; Crowe et al.,
2014). The present study demonstrates the importance
of not only using natural stimuli but also presenting the
stimuli in the natural temporal context (Theunissen and
Elie, 2014).

Target distance processing in the IC of C.
perspicillata

To our knowledge, this is the first study characterizing
the properties of delay tuning in the IC of C. perspicillata.
In Pteronotus parnellii, delay tuned neurons of the IC
usually respond only to a combination of call and echo but
not, or only sparsely, to call or echo alone (Yan and Suga,
1996; Macias et al., 2016). In contrast, collicular neurons
of E. fuscus, another insectivorous species respond in
59% of the recordings to call and echo (Sanderson and
Simmons, 2005). In C. perspicillata, the collicular units
usually respond to call and echo which is indicated by two
activity peaks per call-echo element in the median PSTHs
(Fig. 4D,E). Neuronal tuning to certain call-echo elements
was only visible when integrating the number of spikes
elicited by each call-echo element.

In the midbrain of E. fuscus best delays shorter than 8
ms are rare (IC: Dear and Suga, 1995; superior colliculus:
Valentine and Moss, 1997). We also did not find best
delays shorter than 8 ms in the present study (mean “best
delay” = 14.4 = 6 ms; mean “median delay” = 10.5 = 2.1
ms; Fig. 5C). However, delay tuning to short delays has
been well characterized in the mustached bat’s IC (Mitt-
mann and Wenstrup, 1995; Portfors and Wenstrup, 1999;
Wenstrup and Portfors, 2011). These different findings
may be due to interspecific differences. Although, it is
tempting to compare the present results with studies on
delay tuning from other bat species, it is noteworthy that
we characterized delay tuning based on natural acoustic
stimuli while previous studies used mostly artificial signals
that mimicked the bat’s call-echo pairs presented in iso-
lation (K&ssl et al., 2014). Contrary to the IC, in the cortex
of C. perspicillata, a number of neurons do respond to
echo delays shorter than 8 ms. The latter occurs regard-
less of whether natural sequences or artificial pulse-echo
elements are used for calculating the tuning (Hagemann
et al.,, 2011; Beetz et al., 2016a). Future studies could
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assess whether the short-delay tuning found in C. perspi-
cillata’s AC is created along the colliculo-cortical axes, or
whether it exists in regions of the IC that were not targeted
in the present study. Previous studies have shown that in
the cortex, GABA-mediated inhibition can change the
best delay of the neurons (Xiao and Suga, 2004; Hecha-
varria and Kdéssl, 2014). The latter could be a mechanism
for modifying the delay tuning that is already established
at the level of the IC.

Collicular responses to multiple echoes

Only a few studies have characterized how bat auditory
neurons extract information from multiecho biosonar se-
quences (Edamatsu and Suga, 1993; Sanderson and Sim-
mons, 2002; Beetz et al., 2016b; Greiter and Firzlaff,
2017). This stimulus setting mimics the presence of mul-
tiple objects or multi-reflective surfaces. One study in the
IC of E. fuscus tested the neuronal processing of “spectral
notches.” Such spectral notches derive from two tem-
porally overlapping echoes (Sanderson and Simmons,
2000). Note that in the preset study spectral notches do
not occur since temporally nonoverlapping echoes
were used to create our stimulation sequence. Non-
overlapping echoes were created by the presence of up
to three objects located at different distances from
each other.

Previous data from the AC of C. perspicillata showed
that the neurons preferentially process echo information
from the nearest object (Beetz et al., 2016b). The data
from anaesthetized bats imply that neurons focus by de-
fault on the nearest object and that this processing strat-
egy works without the attention of the animal. However,
recent behavioral experiments from Pipistrellus kuhlii
(Amichai and Yovel, 2017) and from P. abramus (Fujioka
et al., 2016) demonstrate that bats can attend to distant
objects, even in the presence of immediate objects. Such
behavioral results clearly go beyond the neurophysiolog-
ical results from the anaesthetized bat that was stimulated
with a natural echolocation sequence (Beetz et al.,
2016b). Although the animal’s attention could affect neu-
ronal processing, the behavior observed in P. kuhlii and P.
abramus could also be accomplished with neuronal infor-
mation from the IC. Collicular neurons keep track of
echoes from multiple objects (Fig. 6). In the AC of P.
discolor, most neurons also respond to the nearest ob-
ject, but a small population of neurons preferably re-
sponded to a more distant object (Greiter and Firzlaff,
2017). These results resemble more the IC results of the
present study than the AC results from C. perspicillata (Beetz
et al., 2016b). The different results from C. perspicillata and
P. discolor could be based on heterospecific differences but
differences in the used acoustic stimuli cannot be discarded.
Natural hearing is an active process that requires the ani-
mal’s attention (Theunissen and Elie, 2014) and neurons
involved in auditory feedback in self-vocalizations have been
characterized (Schuller, 1979; Radtke-Schuller and Schuller,
1995). Therefore, behavioral results should be cautiously
correlated with neurophysiological results from anaesthe-
tized and passively listening bats.
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Neuroethological roles of the IC for echolocation in
bats

Bilateral ablation experiments of the main nucleus of
the IC showed that the IC is required for echolocation
(Suga, 1969b). In comparison, cortical ablation and focal
inactivation of the AC less severely affected the bats’
echolocation behavior (Suga, 1969a; Riquimaroux et al.,
1991). The IC projects to and receives input from differ-
ent motor centers (Schweizer, 1981; Covey et al., 1987;
Olazabal and Moore, 1989; Moriizumi and Hattori, 1991;
Schuller et al., 1991; Wenstrup et al., 1994). Therefore, the
IC is discussed to be important for control of fast motor
commands and reflexive behaviors during echolocation
(Casseday and Covey, 1996). The results presented in this
study corroborate this idea because the temporal struc-
ture of the echolocation sequence is highly preserved at
the collicular level. During echolocation, bats need to
integrate and possibly predict echo information. Collicular
neurons convey time stamps of the echolocation signals.
The latter could be important for predictive coding in high
brain areas (Wacongne et al.,, 2012). Despite the high
tracking ability of collicular neurons (Figs. 3, 4), IC units
were selective to specific call-echo elements (Fig. 5) and
to object-specific echoes (Fig. 7). Based on our findings,
one could speculate that IC responses allow parallel pro-
cessing of multiple auditory streams, with a certain selec-
tivity to specific echo delays.
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