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Abstract
A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of
intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic
ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving
rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of
integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition
method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness
and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working
point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining
whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states.
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Introduction
At first glance, defining a brain state may seem simple,

yet a useful definition has proven elusive (Friston et al.,

2003; Deco et al., 2009). There could be many reasons for
this failure but the main reason is likely to come from the
realisation that whole-brain dynamics are much more
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Significance Statement

We introduce a novel intrinsic ignition method for characterizing the dynamical complexity of different brain
states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate
neuronal activity to other regions, giving rise to different levels of integration. We show that the intrinsic
ignition method can clearly distinguish human neuroimaging data of two fundamental brain states (wake-
fulness and deep sleep). Furthermore, we use whole-brain modeling to show that the optimal working point
is found where there is maximal variability of intrinsic ignition across brain regions.
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complex than previously thought, and that for example
traditional attractor states do not adequately describe
them (Amit, 1989). Here, we propose that a given brain
state could be defined by its dynamical complexity, un-
derstood as the broadness of communication.

Indeed, the dynamical complexity of the underlying
brain state must arise from the interplay between anatomy
and functional dynamics (Ghosh et al., 2008; Deco et al.,
2011). For a given brain state, a balance has to be found
between the integration and segregation of information
(Deco et al., 2015). The dynamical repertoire of a brain
state depends on the underlying anatomic structural con-
nectivity (SC) and local dynamics (Deco and Kringelbach,
2016), and a number of different methods have tried to
describe the spatiotemporal unfolding of activity (Allen
et al., 2014; Hansen et al., 2015). These methods are able
to describe the evolution of global whole-brain activity but
they are less good at describing the interaction of how
activity in a local region shapes global activity, i.e., at
describing how the broadness of communication is elic-
ited and distributed.

Here, we propose a conceptual framework for studying
the intrinsic ignition of brain activity across time and
space, i.e., the diversity of computation in space and time.
In other words, intrinsic ignition refers to the capability of
a given brain area to propagate feed-forward and recur-
rent neuronal activity to other regions, importantly in the
absence of extrinsic perturbations (natural or artificial
stimulations). This novel concept allows the study not only
of the propagation of brain activity but also of the under-
lying fluctuations and their functional network conse-
quences, i.e., the integration of information over the
whole-brain network (Deco et al., 2015). Intrinsic ignition
quantifies the capability of a given local brain region to
propagate neuronal activity to other regions in the global
whole-brain network.

Furthermore, by defining the mean and variability of the
ignition-driven propagation of activity across regions, we
can characterize the hierarchical organization of the
whole-brain network, that is provide a measure of the
ability of different regions to ignite the integration of infor-
mation. Ranking brain regions by their intrinsic ignition
provides a fingerprint of the hierarchical connectivity or
dynamical processing hierarchy of a given brain state
within the structural connectome. There are many possi-
bilities, from weak to strong hierarchical processing in

which the different brain regions are playing different roles
dependent on shape and form of the brain state finger-
print.

This novel concept of intrinsic ignition is complemen-
tary to the approach taken by Dehaene and colleagues
(Moutard et al., 2015), where they define ignition as the
rapid and sometimes sustained activity elicited after stim-
ulation by external stimuli. Their concept could thus be
thought of as extrinsic ignition. Both modes of intrinsic
and extrinsic ignition can emerge from the same underly-
ing connectome as “two dynamic faces” of the strong
recurrent loops built by brain networks. Indeed, the dense
lateral intra- and interareal connections that characterize
brain networks make possible the emergence of a rever-
beratory dynamics when the level of excitation exceeds
the level of inhibition which can be propagated globally
across the brain. This imbalance between excitation and
inhibition could appear spontaneously in the resting state
(intrinsic ignition) or rapidly induced (extrinsic ignition) by
the action of stimulation by extrinsic sensory stimuli, ex-
plaining in this way both modes. Nevertheless, this con-
cept of extrinsic ignition does not explain how an intrinsic
local activity event in a given brain state (e.g., wakeful-
ness, sleep) is eliciting a propagation of activity across the
whole-brain network.

Here, we apply the novel concept of intrinsic ignition to
characterize the dynamical complexity and broadness of
communication in a unique human neuroimaging dataset
measuring the naturally occurring brain states of sleep
and wakefulness. Furthermore, we construct a whole-
brain model of these brain states to explore the causal link
between intrinsic ignition and the dynamical regime, to
deepen our understanding of the dynamical complexity
underlying brain states.

Materials and Methods
Experimental design

The objectives of the study are to introduce and dem-
onstrate the usefulness of our novel intrinsic ignition
method for characterizing the fundamental brain states.
We designed the study to use this method to characterize
neuroimaging data of human participants in wakefulness
and sleep.

Participants
A total of 63 young healthy consecutive subjects with data

of sufficient quality were included in the study (written in-
formed consent, approval by the local ethics committee,
participants were reimbursed for their participation). Sub-
jects were scanned with simultaneous EEG-fMRI in the eve-
ning after following a regular sleeping schedule. Eight
subjects did not fall asleep inside the scanner and were
excluded from the study, resulting in a group of five subjects
who reached at least N1 sleep (36 females, mean � SD age
of 23.4 � 3.3 years). Mean (�SD) durations of contiguous
sleep epochs for these participants were 10.29 � 9.45 min
for wakefulness, 5.75 � 4.84 min for N1, 6.14 � 3.77 min for
N2, and 11.67 � 8.66 min for N3. In this article, we only
considered the 18 participants that went through all three
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sleep stages, and we only considered the wakefulness and
deep sleep (N3) conditions.

fMRI and EEG acquisition and processing
EEG via a cap (modified BrainCapMR, Easycap) was

recorded continuously during fMRI acquisition (1505 vol-
umes of T2�-weighted echo planar images, TR/TE � 2080
ms/30 ms, matrix 64 � 64, voxel size 3 � 3 � 2 mm3,
distance factor 50%; FOV 192 mm2) at 3T (Siemens Trio).
An optimized polysomnographic setting was employed
[chin and tibial EMG, ECG, EOG recorded bipolarly (sam-
pling rate 5 kHz, low pass filter 1 kHz) with 30 EEG
channels recorded with FCz as the reference (sampling
rate 5 kHz, low pass filter 250 Hz); pulse oxymetry and
respiration were recorded via sensors from the Trio (sam-
pling rate 50 Hz)] and MR scanner compatible devices
(BrainAmp MR�, BrainAmpExG; Brain Products), facilitat-
ing sleep scoring during fMRI acquisition (AASM, 2007;
Jahnke et al., 2012). MRI and pulse artifact correction
were performed based on the average artifact subtraction
(AAS) method (Allen et al., 1998) as implemented in Vision
Analyzer2 (Brain Products) followed by objective (CBC
parameters, Vision Analyzer) ICA-based rejection of resid-
ual artifact-laden components after AAS resulting in EEG
with a sampling rate of 250 Hz (Jahnke et al., 2012). EEG
artifacts due to motion were detected and eliminated
using an ICA procedure implemented in Vision Analyzer2.
Sleep stages were scored manually by an expert accord-
ing to the AASM criteria (AASM, 2007).

fMRI preprocessing
Using Statistical Parametric Mapping (SPM8, www.

fil.ion.ucl.ac.uk/spm) echo planar imaging (EPI) data were
realigned, normalized (MNI space), and spatially smoot-
hed (Gaussian kernel, 8-mm3 full width at half maximum).
Data were resampled to 4 � 4 � 4 mm resolution to
facilitate removal of noise and motion regressors. Note
that resampling introduces averaging of blood oxygen
level-dependent (BOLD) signals, which are nevertheless
finally averaged over cortical and subcortical regions of
interest to construct functional networks. Cardiac, respi-
ratory (both estimated using the RETROICOR method;
Glover et al., 2000), and motion-induced noise were re-
gressed out. Data were bandpass filtered in the range
0.01-0.1 Hz (Cordes et al., 2001) using a sixth order
Butterworth filter.

We used tools from FSL to extract and average the time
courses from all voxels within each cluster in the auto-
mated anatomic labeling (AAL)90 atlas (i.e., the AAL atlas
using cortical and subcortical but not cerebellar regions;
Tzourio-Mazoyer et al., 2002) which were then used to
constrain the global coupling of the Hopf model. The
group functional connectivity (FC) matrix was averaged
over the participants, using Matlab (The MathWorks) to
compute the pairwise Pearson correlation between all 90
regions, applying Fisher’s transform to the r values to get
the z values for the final 90 � 90 FC_fMRI matrix.

Diffusion tensor imaging (DTI) acquisition and
processing

The Hopf whole-brain model is constrained using the
normal structural connectome obtained using DTI in 16
healthy right-handed participants (11 men and five
women, mean age: 24.75 � 2.54) who were recruited
through the online recruitment system at Author Univer-
sity. Data were collected at Aarhus University, Denmark.
Participants with psychiatric or neurologic disorders (or a
history thereof) were excluded from participation in this
study. The MRI data (structural MRI, DTI) were collected in
one session on a 3T Siemens Skyra scanner at Aarhus
University, Denmark. The parameters for the structural
MRI T1 scan were as follows: voxel size of 1 mm3; recon-
structed matrix size 256 � 256; echo time (TE) of 3.8 ms
and repetition time (TR) of 2300 ms.

The DTI data were collected using TR � 9000 ms, TE �
84 ms, flip angle � 90°, reconstructed matrix size of
106 � 106, voxel size of 1.98 � 1.98 mm with slice
thickness of 2 mm and a bandwidth of 1745 Hz/Px.
Furthermore, the data were collected with 62 optimal
nonlinear diffusion gradient directions at b � 1500 s/mm2.
Approximately one nondiffusion weighted image (DWI;
b � 0) per 10 diffusion-weighted images was acquired.
Additionally, the DTI images were collected with different
phase encoding directions. One set was collected using
anterior to posterior phase encoding direction and the
second acquisition was performed in the opposite direc-
tion. For the parcellation, we used the AAL template to
parcellate the entire brain into 90 regions (76 cortical
regions, adding 14 subcortical regions, AAL90). The par-
cellation consists of regions distributed in each hemi-
sphere (Tzourio-Mazoyer et al., 2002). The linear
registration tool from the FSL toolbox (www.fmrib.ox.
ac.uk/fsl, FMRIB; Jenkinson et al., 2002) was used to
coregister the EPI image to the T1-weighted structural
image. The T1-weighted image was coregistered to the T1
template of ICBM152 in MNI space (Collins et al., 1994).
The resulting transformations were concatenated and in-
versed and further applied to warp the AAL template
(Tzourio-Mazoyer et al., 2002) from MNI space to the EPI
native space, where interpolation using nearest-neighbor
method ensured that the discrete labeling values were
preserved. Thus the brain parcellations were conducted in
each individual’s native space. We generated the SC
maps for each participant using the DTI data acquired. We
processed the two datasets acquired (each with different
phase encoding to optimize signal in difficult regions). The
construction of these SC maps or structural brain net-
works consisted of a three-step process. First, the regions
of the whole-brain network were defined using the AAL
template as used in the functional MRI data. Second, the
connections between nodes in the whole-brain network
(i.e., edges) were estimated using probabilistic tractogra-
phy. Third, data were averaged across participants. Sim-
ilar to the functional data, we applied the AAL90 template
using the FLIRT tool from the FSL toolbox (www.fmrib.
ox.ac.uk/fsl, FMRIB) to coregister the b0 image in diffu-
sion MRI space to the T1-weighted structural image and
then to the T1 template of ICBM152 in MNI space (Collins
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et al., 1994). The two transformation matrices from these
coregistration steps were concatenated and inversed to
subsequently be applied to warp the AAL templates
(Tzourio-Mazoyer et al., 2002) from MNI space to the
diffusion MRI native space.

Hopf whole-brain computational model
The Hopf whole-brain computational model consists of

90 anatomically interconnected brain areas (cortical and
subcortical nodes) defined according the AAL90 parcel-
lation (see section on Diffusion tensor imaging acquisition
and processing). More specifically, the underlying empir-
ical anatomic SC matrix Cij couple the local dynamics of
each brain area to emulate the empirically observed func-
tional resting brain dynamics. In this way, the Hopf model
explicitly link structure (anatomy) and function (BOLD sig-
nal). As described in the literature (Kringelbach et al.,
2015; Deco and Kringelbach, 2016; Deco et al., 2017b),
the whole-brain dynamics are given by the following set of
coupled equations:

dxj

dt
� �aj � xj

2 � yj
2�xj � �jyj � G �

i

Cij�xi � xj���j�t�

(1)

dyj

dt
� �aj � xj

2 � yj
2�yj � �jxj � G �

i

Cij�yi � yj���j�t�

(2)

Where �j is additive Gaussian noise with standard de-
viation � � 0.02. The anatomic structural matrix Cij, cou-
pling the local dynamics of nodes i and j, expresses the
density of fibers between those brain areas as derived
from DTI based tractography (which is here scaled to a
maximum value of 0.2). The local dynamics of each individ-
ual brain area is described by a Landau-Stuart Oscillator
which corresponds to the normal form of a supercritical
Hopf bifurcation. The normal form of a Hopf bifurcation is the
canonical model for studying the transition from noisy to
oscillatory dynamics (Kuznetsov, 1998). Previous research
has shown the usefulness, richness, and generality of this
type of model for describing EEG dynamics at the local node
level (Freyer et al., 2011, 2012). This normal form allowed us
to fit the model to neuroimaging data over time, i.e., not only
by fitting the grand average FC but also by fitting the tem-
poral structure of the fluctuations, FC dynamics (Hansen
et al., 2015).

The intrinsic frequency �i of each node of the network is
in the 0.04–0.07 Hz band (i � 1, . . .,n). The averaged
peak frequency of the narrowband BOLD signals of each
brain region defines the intrinsic frequencies. The simu-
lated BOLD signals were bandpass filtered within the
narrowband 0.04–0.07 Hz, which is the frequency range
that mapped to the gray matter has been shown to be
more reliable and functionally relevant than other fre-
quency bands in describing the resting state networks.

This normal form has a supercritical bifurcation at aj �
0, so that for aj � 0 there exists a stable limit cycle
oscillation with frequency fj � �j/2� and for aj � 0 the local

dynamics has a stable fixed point at zj � 0 (which due to
the additive Gaussian term corresponds to a low activity
noisy state). Here, we take aj � 0 for all nodes, such that
the local dynamics is described as a perfect mixture
between noise and oscillations.

The variables xj emulate the BOLD signal of each node
j. The parameter G denotes the global coupling corre-
sponding to a factor scaling all synaptic conductivity con-
nections. The global coupling parameter G is the control
parameter with which we study the optimal dynamical
working region where the simulations maximally fit the
empirical data. More concrete, we study exhaustively how
G is fitting the empirical FC matrix and the global coher-
ence level. We fit the simulated FC matrices of the model
(averaged Fisher’s z-transformed over all sessions) to the
empirical data (averaged Fisher’s z-transformed over all
sessions) by maximizing the Pearson correlation coeffi-
cient between the elements of the upper triangular part of
both empirical and simulated FC matrices. In addition, the
global coherence is fitted by minimizing the absolute
value of the difference between the empirical and simu-
lated averaged global levels of synchronization between
the different nodes across time (Wildie and Shanahan,
2012). We measure the averaged synchronization using
the Kuramoto order parameter. The Kuramoto order pa-
rameter measures the global level of synchronization of
the n oscillating signals. Under complete independence,
the n phases are uniformly distributed and thus R is nearly
zero, whereas R � 1 if all phases are equal (full synchro-
nization). The mathematical expression of the Kuramoto
order parameter is given by:

R�t��	�k�1

n
ei
k�t�	/n (3)

where 
k(t) is the instantaneous phase of each narrow-
band BOLD signal at node k. The instantaneous phase

k(t) of each narrowband signal was computed using the
Hilbert transform. The Hilbert transform yields the asso-
ciated analytical signals. The analytic signal represents a
narrowband signal, s(t), in the time domain as a rotating
vector with an instantaneous phase, 
(t), and an instan-
taneous amplitude, A(t), i.e., s�t� � A�t�cos �
�t��. The
phase and the amplitude are given by the argument and
the modulus, respectively, of the complex signal z(t), given
by z�t� � s�t� � i.H�s�t��, where i is the imaginary unit and
H[s(t)] is the Hilbert transform of s(t).

Ignition-driven mean integration (IDMI)
Within our novel intrinsic ignition framework the defini-

tion of an intrinsic ignition event is as follows: An intrinsic
ignition event for a given brain region is defined by bina-
rizing the transformed functional time series (BOLD fMRI)
into z-scores zi(t) and imposing a threshold � such that the
binary sequence �i(t) � 1 if zi(t) � �, and is crossing the
threshold from below, and �i(t) � 0 otherwise. This pro-
cedure is described in details by Tagliazucchi et al.
(2012a) and in Figure 1A.

We investigate how a global measure of dynamical
complexity, namely the integration, evolves in a window of
time when triggered by the events of that given single

New Research 4 of 12

September/October 2017, 4(5) e0106-17.2017 eNeuro.org



brain region (Fig. 1). More specifically, for a given brain
region, we average across the events a measure of the
integration elicited at time t relative to the events. Finally,
we define the IDMI of a given brain area as the averaged
elicited integration during a time window of four TRs. The
selection of this window width was determined by the
time that takes the integration to return to basal values.
We repeated this procedure for all brain regions in the
AAL90 parcellation.

We compute the integration using the phase space of
the signals. We call this measure phase-based integra-
tion. We first filter the fMRI signals in the range of 0.04-

0.07 Hz as explained above and extract via the Hilbert
transform the phases. For each time point we calculate
the phase lock matrix describing for each time point the
state of pair-wise phase synchronization between regions
j and k as:

Pjk�t� � e�3|
j�t��
k�t�| (4)

where 
j�t� is the extracted phase of brain area j at time t.
Then we compute the level of integration associated with
that coherence configuration at time t. The concept of
integration can be defined using the length of the largest

Figure 1. Measuring intrinsic ignition. A, The activity of a region in the network can be measured using BOLD neuroimaging signals
where a threshold method can be used to define events as those crossing a threshold from below (see green line and Materials and
Methods). For each driving event, we measure the activity in the rest of the network (in stippled red area) in the gray time window.
B, This corresponds to a binary phase lock matrix over the time window (left panel). In this matrix, we can compute the integration
by finding the largest subcomponent (computing the area under the curve for all integration values for all thresholds). This integration
is a measure of the global integration, i.e., the broadness of communication across the network (Deco et al., 2015). This can be
repeated for each of the driving events, producing a mean of the intrinsic ignition for each network region, which we call
Ignition-Driven Mean Integration (IDMI).
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connected component in the phase lock matrix Pjk�t�.
More specifically, for a given absolute threshold � be-
tween 0 and 1 (scanning the whole range), the symmetric
phase lock matrix Pjk�t� can be binarized (0 if |Pjk|��, 1
otherwise). From this symmetric phase lock matrix, a
value of integration is computed as the largest component
given by the length of the connected component of the
undirected graph defined by the binarized matrix consid-
ered as an adjacency matrix. This is the largest subgraph
in which any two vertices are connected to each other by
paths, and which connects to no additional vertices in the
supergraph.

Ignition-driven variability
To characterize the degree of hierarchical organization

of the brain, we calculate ignition-driven variability by
computing the standard deviation of the IDMI across
nodes.

Surrogate analysis
To assess the validity of our ignition measures, we test

whether the ignition values obtained from the real data are
significantly higher than those obtained from reshuffled,
randomized data. To create the random data, we just
permuted (random permutation) the time series phases in
each time point and then compute the ignition values
associated for our spontaneous events. We repeat this
procedure 50 times, and then compare the average of
these values to the ignition values obtained on the real
data.

Permutation tests
We tested whether there were significant differences

between conditions using a Monte Carlo permutation test.
To this end, for each pair of conditions, we randomly
shuffle the labels between the conditions to create two
new simulated conditions, repeat this procedure in an
iterative way (number iterations, 10,000) and asses how
many times the difference between the simulated condi-
tions is higher than the difference between the condition
to be compared. In conclusion, we compute the p value of
the null hypothesis that the two random distributions
show higher difference than the conditions to be com-
pared. We used this approach to compare the ignition
values for the real versus randomized data and also to
compare the ignition values across real conditions.

Results
Intrinsic ignition

We investigated a unique human neuroimaging dataset
with two fundamentally different brain states, namely
wakefulness and deep sleep (N3 stage of sleep). First, we
used the novel intrinsic ignition method to characterize
the broadness of communication in the two states. In the
Materials and Methods section and in Figure 1, we de-
scribe the precise algorithm for computing intrinsic igni-
tion. Essentially, we compute the intrinsic ignition for a
given region by computing the integration in a time win-
dow following an event in this region. We then compute
the average across events and the variability across
nodes. The profile of the mean and variability of intrinsic

ignition triggered integration as a function of the brain
region characterize the dynamical complexity underlying
a certain brain state.

Briefly, an intrinsic ignition event is defined as a binary
signal resulting from the transformed functional time se-
ries (BOLD fMRI) into z-scores zi(t) and imposing a thresh-
old � such that the binary sequence �i(t) �1 if zi(t)� �, and
is crossing the threshold from below, and �i(t) � 0 other-
wise (see Materials and Methods; Tagliazucchi et al.,
2012a, and their Fig. 1A). Figure 1 shows a cartoon of this
procedure. As can be seen, if the top signal (in red) refers
to the specific brain region whose ignition capability we
are analyzing, an event is the point where the signal
crosses the threshold from below.

Figure 2A,B shows for a particular subject the events
for all BOLD signals under two different brain states,
namely wakefulness and sleep (N3 stage). The x-axis
represents the time whereas the y-axis represents the
different brain areas. Here, we parcellate the brain using
the AAL90 (automatic anatomy labeling, including all cor-
tical and subcortical areas; Tzourio-Mazoyer et al., 2002).
Each single black vertical bar refers to an event for the
corresponding brain area.

We compute the IDMI across events of a given brain
area as the averaged elicited integration during a time
window of four TRs. Figure 2C plots the IDMI based on
the phase lock matrix (see phase-based integration defi-
nition in Materials and Methods). Figure 2, bottom left
panel, plots the IDMI under two different conditions,
namely wakefulness and sleep, for all brain areas. It is
very clear from the figure (and explicitly analyzed in Fig.
2D), that the mean value of the IDMI across brain areas is
significantly different for both conditions (p � 0.0001, with
the data in blue and the surrogate data in green).

We also compute the variability of IDMI across brain
regions by computing the standard deviation, which is
also significantly different for both conditions (p � 0.005).
It is important to remark that the variability of IDMI is a
good marker for the hierarchy of computation (Deco and
Kringelbach, 2017). If the variability is small, this suggests
that the brain organization is less hierarchical while larger
variability suggests more hierarchical.

Finally, to test the validity of the ignition method, we
computed the ignition values on reshuffled, randomized
data. Our results show that the ignition values obtained
from the randomized data are significantly smaller than
the ignition values obtained from the real data (p � 0.0001
for both the IDMI and variability of IDMI; Fig. 2D, green)

Exploration using the Hopf whole-brain
computational model

To further explore the causal link between intrinsic ig-
nition and the dynamical regime, we construct a whole-
brain model (see Materials and Methods) fitting the
neuroimaging data (Fig. 3; Kringelbach et al., 2015; Deco
et al., 2017b). Briefly, whole-brain models link anatomic
structure with functional dynamics (Fig. 3A). SC data can
be obtained by DWI/DTI combined with probabilistic trac-
tography, which represents the density of fibers between
brain regions. The global dynamics of the whole-brain
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model results from the mutual interactions of local node
dynamics coupled through the underlying empirical ana-
tomic SC matrix. Here, we use for each brain area a local
dynamical model given by a normal form of a supercritical
Hopf bifurcation. The normal form of a Hopf bifurcation
can describe the transition from asynchronous noisy be-
havior to full oscillations. The main parameter that can be
manipulated for fitting the empirical data and for analyzing
the model is the global coupling parameter G (see Mate-
rials and Methods for details). The global coupling param-
eter G corresponds to the conductivity of the synaptic
connections which for simplicity is considered here uni-
form across the brain.

We can then investigate the intrinsic ignition as a func-
tion of G contrasting this with the characteristics of the

intrinsic ignition at the working point of the model for the
optimal fit with the empirical neuroimaging data (Fig. 3B).

Figure 3C shows the quality of fitting of the empirical
wakefulness data as a function of the coupling parameter
G. We monitor two different measures, namely, (1) the
correlation between the simulated and empirical static
grand average FC matrices; and (2) the absolute value of
the difference between the empirical and simulated aver-
aged global levels of synchronization between the differ-
ent nodes across time (Kuramoto order parameter). The fit
of the static grand average FC is shown in blue as a
function of the global coupling G, while the synchroniza-
tion (mean Kuramoto order parameter) is shown in black.
As can be seen, the static FC is not the best measure for
constraining the model after values of around 0.1. Instead,

Figure 2. The Ignition-Driven Mean Integration (IDMI) for wakefulness and deep sleep. A, Example of intrinsic ignition events for a time
window in one wakeful participant. B, Example of intrinsic ignition events for a participant in deep sleep across all brain regions. C, We
plot the IDMI in wakefulness (top curve) and deep sleep (bottom curve) for all of the 90 AAL brain regions across all participants. They
are clearly separated. D, Box plot shows that the IDMI across participants are significantly different between wakefulness and sleep
in terms of both mean (left blue graphs, IDMI) and variability (right blue graphs, variability of IDMI) across brain regions. In addition,
we show that computing IDMI on surrogate (in green), reshuffled data are significantly lower, showing the specificity of this novel
measure.
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we use the minimum of the synchronization for this pur-
pose, since this is much better at catching the spatiotem-
poral behavior of the system, as we have shown
elsewhere (Kringelbach et al., 2015; Deco and Krin-
gelbach, 2016; Deco et al., 2017b, c).

Figure 3D shows the variability of IDMI across brain
regions as a function of G. As can be seen from Figure
3C,D, for G � 0.3 at the optimal working point of the
model, i.e., when the empirical data are optimal fitted with
the minimum of the difference of the synchronization
levels, we also find that the standard deviation across
brain areas of the IDMI is maximal. This suggests that the
hierarchical organization of wakefulness is maximal for
the optimal working point of the model, i.e., the brain is
strongly hierarchical.

To further explore intrinsic ignition as a function of brain
state, in Figures 4, 5, we fit the Hopf model for wakeful-
ness and sleep, respectively. For the data generated by
each model, we plot for three different values of G (small,
optimal, large), the intrinsic ignition events across brain
regions (over a couple of minutes) with the corresponding
IDMI across brain regions. This can be contrasted with the
empirical data shown on the far right. The main difference
between wakefulness and sleep is that the working point
shifts to a smaller value (for sleep). Importantly, for sleep

the intrinsic ignition and its variability across brain regions
is no longer coinciding with the optimal working point of
the model.

Discussion
In this article, we have demonstrated that the novel

concept of intrinsic ignition is a very useful measure for
characterizing the dynamical complexity of different brain
states. Here, we have shown that the method can signif-
icantly distinguish wakefulness and deep sleep to further
explore the validity of intrinsic ignition, we also used
whole-brain computational modeling to causally demon-
strate that the intrinsic ignition is maximal at the optimal
working point. Taken together, the findings strongly sug-
gest that this novel data-driven method can be used to
fully characterize any given brain state since the intrinsic
ignition is sensitive to the global coupling of the whole-
brain computational model, which is regulating the dy-
namical complexity. Interestingly, the optimal working
point of the whole-brain computational model is shifted
for deep sleep which could indicate subcriticality. Future
studies should use the methodology of Palva et al. (2013)
to investigate the criticality of sleep compared to wakeful
resting state.

Figure 3. Relating intrinsic ignition to causal whole-brain computational modeling. A, First, we fit the whole-brain Hopf model to the
neuroimaging wakefulness data using functional and structural neuroimaging data. We plot the fit of the model in terms of grand
average functional connectivity (FC) and synchronization as a function of the global coupling parameter (G), with the gray bar
indicating the optimal coupling for the model. B, We compute the intrinsic Ignition-Driven Mean Integration (IDMI) for each of the
global coupling values of the model. As can be seen at the optimal coupling point (marked with the gray bar), we also find a maximal
value of the standard deviation of IDMI across brain regions. This suggests that resting wakefulness contains maximal hierarchical
organization.
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The intrinsic ignition concept can provide new informa-
tion on how information processing in the human brain is
dependent on the hierarchical structural organization of
the brain (Mesulam, 1998). It is clear that for a given brain
state, this hierarchy of information processing has to allow
for the optimal integration and segregation of information
(Deco et al., 2015). Connectomics has made great strides
in identifying the structural backbone of connectivity,
identifying a rich-club containing hubs that can enable
this balance (van den Heuvel and Sporns, 2011). In addi-
tion to these structural measures, it has become clear that
functional measures are needed to complement our un-
derstanding of how brain regions have been demon-
strated to play key functional binding roles without
necessarily having the structural rich-club properties (Mi-
sic et al., 2014; Deco et al., 2017a).

Using the intrinsic ignition concept and specifically
measuring the IDMI for different brain states can provide
new information on the link between the structural and
functional hierarchical connectivity. The present results
show maximal standard deviation of the IDMI across brain
regions at the working point optimally fitting the empirical
wakefulness data. This shows that the functional brain
organization is maximally hierarchical during spontaneous
waking brain activity. This is strong evidence on the ques-
tion of functional hierarchical brain organization that has
been debated since the beginning of neuroscience with
early physiologists like Charles Sherrington suggesting
that there was a final common pathway for all brain pro-
cessing, i.e., that sensory stimuli have to be processed
before integration by higher order brain regions and finally
executed at the top of the hierarchy in the motor cortex

Figure 4. Model and ignition for wakefulness. A, We show the standard deviation of intrinsic Ignition-Driven Mean Integration (IDMI)
and the synchronization (mean Kuramoto order parameter) as a function of the global coupling point of the model fitted to wakefulness
(top row). In particular, for three low, optimal, and high levels of coupling, the middle row shows plots over time of the binary intrinsic
ignition events for all 90 brain regions (using the binarization process described in Fig. 1A). In the lower row, we show the
corresponding IDMI means for these three values. B, In the far-right column, this is shown directly for the empirical data with a plot
over time for all brain regions (middle row) and the IDMI (bottom row).
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(Sherrington, 1906). In the vein of these observations of
dynamic processing hierarchy, Baars, Dehaene, and
Changeux have suggested that there could be a global
workspace of brain regions controlling and broadcasting
information (Baars, 1989; Dehaene et al., 1998). The
global workspace regions would be at the top of the brain
hierarchy whereas the sensory regions are lower down. In
terms of a ranking of the intrinsic ignition, one would
expect a clear staircase profile reflecting the presumed
increase in computational load from sensory regions to
regions in the global neuronal workspace.

Ranking the intrinsic ignition of wakefulness (and of
deep sleep) shows an inverse sigmoidal curve. This dem-
onstrates that the functional organization of brain activity
is hierarchical but nonuniform graded. As such, it does not

show a clear demarcation between potential workspace
regions and other brain regions as predicted by the global
workspace theory. Still, the results are compatible with
this account, given there are clearly regions with higher
intrinsic ignition variability. These are more computation-
ally relevant and could play a central role in broadcasting
information, more so than the regions with low intrinsic
ignition, which are more likely to be related to sensory
processing.

We also used the intrinsic ignition method to investigate
differences between brain states and in particular differ-
ences between wakefulness and deep sleep. This is im-
portant given that deep sleep is generated within the
same underlying anatomic structure and is a fully revers-
ible state characterized by unresponsiveness and altered

Figure 5. Model and ignition for deep sleep. A, In the same way as in Figure 4, we show the standard deviation of intrinsic
Ignition-Driven Mean Integration (std IDMI) and the synchronization (mean Kuramoto order parameter) as a function of the global
coupling point of the model fitted to deep sleep (top row). For three low, optimal, and high levels of coupling, we show plots over time
of the binary intrinsic ignition events for all 90 brain regions (middle row) and the corresponding IDMI means for these three values
(lower row). As expected, the global working point of the model for deep sleep is shifted with regards to wakefulness. Similarly, at this
global working point of the model, the stdIDMI is no longer maximal, and thus the hierarchical organization not optimal in deep sleep.
B, This can be compared with the plot over time for all brain regions (middle row) and the IDMI (bottom row) for the empirical data
of deep sleep.
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consciousness, distinguished from wakefulness by a de-
crease in the ability to react to stimuli (Cirelli and Tononi,
2008). Previous attempts to use ICA or seed-based meth-
ods that have been successfully used to characterize
resting state data in wakefulness (Biswal et al., 1995;
Greicius et al., 2003; Fransson, 2005; Fox and Raichle,
2007) have found that the same resting-state networks
are generally preserved during sleep, even during deep
sleep (Boly et al., 2012; Tagliazucchi et al., 2013). But it
has been shown that increasing sleep depth is associated
with a breakdown of corticocortical FC, accompanied by
changes in brain activity (Kaufmann et al., 2006; Horovitz
et al., 2009; Tagliazucchi et al., 2012b). The functional
repertoire of brain connectivity is sustained by the under-
lying anatomic backbone (Greicius et al., 2009). Indeed,
the average FC is more correlated to the underlying ana-
tomic skeleton during states of deep sleep and anesthesia
compared to wakefulness (Barttfeld et al., 2015; Taglia-
zucchi et al., 2016).

We found using the novel intrinsic ignition method that
it significantly distinguished wakefulness and deep sleep.
In fact, the IDMI in wakefulness and deep sleep were
clearly separated for all of the 90 AAL brain regions across
all participants (Fig. 2C). This demonstrates that the in-
trinsic ignition method is highly sensitive to different brain
states.

It should be noted that while the current method uses a
simple threshold method for extracting events, it could
equally well use other more sophisticated mathematical
methods for extracting point processes (Caballero Gaudes
et al., 2013; Karahanoğlu et al., 2013; Petridou et al., 2013).
Such methods have been shown to be able to describe
many important aspects of dynamics such as, e.g., rest-
ing state networks and complexity (Karahanoğlu et al.,
2013; Karahanoğlu and Van De Ville, 2015).

Overall, we have shown that this intrinsic ignition
method is a promising method for characterizing the dy-
namical complexity of brain states and general principles
of brain processing. In future research, it will be important
to test this concept on a whole range of different brain
states. One possibility would be to test conditions with
changes in consciousness such as vegetative coma, min-
imal conscious state, locked-in syndrome and various
levels of anesthesia (Casali et al., 2013). Another possi-
bility would be to characterize altered brain states elicited
by drugs such as morphine, amphetamines, psilocybin,
and LSD (Carhart-Harris et al., 2014). It might also be
useful for characterizing the preictal state in epilepsy to
discover potential treatment targets.

Even more generally, it will be possible to use the
intrinsic ignition method for detecting differences in neu-
ropsychiatric disorders (Deco and Kringelbach, 2014).
Used in conjunction with causal whole-brain computa-
tional modeling (Cabral et al., 2014), this raises the pos-
sibility to find the brain regions that lead to imbalances in
the dynamical complexity associated with neuropsychiat-
ric disorders and which could potentially be rebalanced
(Kringelbach et al., 2010, 2011).
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