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Abstract
The propensity of animals to shift choices immediately after unexpectedly poor reinforcement outcomes is
a pervasive strategy across species and tasks. We report here that the memory supporting such lose-shift
responding in rats rapidly decays during the intertrial interval and persists throughout training and testing on
a binary choice task, despite being a suboptimal strategy. Lose-shift responding is not positively correlated
with the prevalence and temporal dependence of win-stay responding, and it is inconsistent with predictions
of reinforcement learning on the task. These data provide further evidence that win-stay and lose-shift are
mediated by dissociated neural mechanisms and indicate that lose-shift responding presents a potential
confound for the study of choice in the many operant choice tasks with short intertrial intervals. We propose
that this immediate lose-shift responding is an intrinsic feature of the brain’s choice mechanisms that is
engaged as a choice reflex and works in parallel with reinforcement learning and other control mechanisms
to guide action selection.
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Introduction
Animals use various strategies when choosing among

responses yielding uncertain reinforcement outcomes.
These strategies may be informed by the discounted sum

of many past reinforcements so as to bias choice toward
actions that, on average, have provided more favorable
reinforcements (Herrnstein, 1961). This is embodied by
reinforcement learning and other algorithms that can ac-
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Significance Statement

The brain appears to use several neural systems that operate in parallel to control decisions. We
provide very strong evidence here that a decision system compelling rats to shift responses after bad
outcomes strongly influences decisions for several seconds after reward omission, and that its
properties are distinct from other decision systems, such as those compelling rats to repeat decisions
leading to good outcomes. This shift system is prevalent from the first day of training, and its properties
are remarkably stable over weeks of testing. We suggest that it may be an immutable choice reflex that
strongly influences decisions in the seconds after reward omission to briefly augment the output of
other reinforcement learning systems.
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count for experience-dependent choice bias that evolves
over many trials (Rescorla and Wagner, 1972; Barto,
1995). The evidence that mammals can use a form of
reinforcement learning to solve some tasks is overwhelm-
ing (Balleine and O’Doherty, 2010; Bromberg-Martin et al.,
2010a). The brain, however, has several other robust sys-
tems for learning and memory that can strongly influence
actions (McDonald and White, 1995; Stote and Fanselow,
2004; Gruber and McDonald, 2012). For instance, deci-
sions are often disproportionately influenced by the re-
cency of reinforcements and other proximal factors,
which are not fully captured by conventional reinforce-
ment learning algorithms; such factors can be included
via additional model components so as to improve the fit
of these algorithms to behavioral data from rodents and
humans (Ito and Doya, 2009; Rutledge et al., 2009; Skelin
et al., 2014). In particular, animals performing operant
tasks for appetitive outcomes tend to repeat responses
that were rewarded in immediately preceding trials (win-
stay), whereas they tend to shift to alternative choices if
preceding responses were not rewarded (lose-shift).
These choice strategies have been reported in many stud-
ies spanning a wide array of tasks and species, including
humans (Frank et al., 2007; Wang et al., 2014), nonhuman
primates (Mishkin et al., 1962; Schusterman, 1962; Lee
et al., 2004), rats (Evenden and Robbins, 1984;
Skelin et al., 2014), mice (Means and Fernandez, 1992;
Amodeo et al., 2012), pigeons (Rayburn-Reeves et al.,
2013), and honeybees (Komischke et al., 2002). It is im-
portant to identify the neural mechanisms of these ubiq-
uitous strategies to improve neurobiologically grounded
theories of choice behavior.

Lose-shift responding in an operant task was recently
shown to be abolished by lesions of the sensorimotor
striatum in rats (Skelin et al., 2014), which is unexpected
because this striatal region has been predominantly as-
sociated with the gradual formation of habits that are
relatively insensitive to changes in reinforcement value as
revealed by devaluation procedures and maze navigation
(Yin et al., 2004; Pennartz et al., 2009). Here we reveal
several new dissociated properties of lose-shift and win-
stay response strategies, which can account for some
apparent discrepancies in findings from distinct testing
paradigms. In particular, we show that the temporal de-
pendence of choice on previous reinforcement can pres-
ent a significant confound pertinent to an array of
behavioral tests and can account for the involvement of

the dorsolateral striatum in the present task but not in
devaluation.

Methods
Animals

A total of 115 male Long-Evans rats (Charles River,
Saint-Constant, QC, Canada, except as noted below)
were used in the experiments presented here. The corre-
lation and temporal dependence of lose-shift and win-
stay responding were determined from all animals that
met the performance criterion (n � 98; see below); these
data were collected over 14 months by four different
experimenters in five distinct cohorts. The subject infor-
mation (number of subjects, age at time of first testing) are
as follows: n � 17, 88 d; n � 19, 110 d; n � 16, 100 d; n
� 46, 99 d; and n � 17, 126 d. One of these cohorts (n �
19) was additionally used for the barrier experiment de-
scribed below (Fig. 3). A different cohort (n � 17), which
was born in-house, was used to study task acquisition
(Fig. 5). The protocol for the behavioral task and the
testing apparatus used was the same for each experi-
ment. All animals weighed 350–600 g at the time of
testing and were pair-housed in standard clear plastic
cages in a vivarium with a 12-h light/dark cycle (lights off
at 7:30 p.m.). The animals were allowed to habituate in the
facility and were handled for at least 2 min/d for 1 week
before training. Behavioral training and testing were con-
ducted during the light phase (between 8:30 a.m. and 6:00
p.m.). The animals were restricted to 1 h of water access
per day in individual cages and had ad libitum access to
water on weekends; body weight was maintained at
�85% of pretesting weight. All animal procedures were
performed in accordance with the authors’ university an-
imal care committee’s regulations.

Apparatus
Behavioral training and testing took place in one of six

identical custom-built aluminum boxes (26 � 26 cm).
Each box contained two panel lights and two liquid deliv-
ery feeders on either side of a central nose-poke port (Fig.
1A). Infrared emitters and sensors in the feeders and
central port detected animal entry. After illumination of the
panel lights, a rat poked its snout into the central port to
initiate a trial, and then responded by locomoting to one of
the two feeders. Each feeder was equipped with an opti-
cal beam break system in the feeder to detect licking. The
beam was conducted to the indentation in the feeder
where the liquid reward was delivered via a pair of plastic
optical fibers, and rapid changes in transmitted light in-
tensity were detected with an industrial red/infrared (680-
nm) emitter/sensor unit designed for detecting rapid
interruptions in transmission while self-adjusting the emit-
ted light power to counteract slow changes (Banner En-
gineering, Minneapolis, MN, model D12DAB6FP). This
system sometimes registered the entry of liquid into the
feeder, and could sometimes count a break as two events
(the on and the off phases) because of the self-adjusting
feature. The number of detected licks may therefore be
biased. These biases are invariant over time, and we
randomized the assignment of subjects to testing boxes
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each session; the biases therefore do not present signif-
icant obstacles for interpreting the relative changes in
licking behavior. A 13-cm-long aluminum barrier orthog-
onal to the wall separated each feeder from the central
port. This added a choice cost and reduced choice bias
originating from body orientation. A longer 20-cm barrier
was used in some sessions to increase the intertrial inter-
val (ITI) between reward feeder exit and the subsequent
nose-poke to begin the next trial. Control of the behavioral
task was automated with a microcontroller (Arduino
Mega) receiving commands via serial communication
from custom software on a host computer. The hardware
connections from the microcontroller to the sensors,
valves, and lights were made via optically isolated solid-
state relays (Crydom, IDC5, ODC5). We attempted to
reduce acoustic startle from sounds outside of the testing
chamber by presenting constant background audio stim-
uli (local radio station).

Behavioral task
Individual trials of the task began with illumination of

two panel-mounted lights mounted proximally to the
nose-poke port and inactivation of the overhead house
light. Animals then had 15 s to commit a nose-poke into
the central port and subsequently respond to one of the
two possible feeders. If the rat failed to respond, the
apparatus would briefly enter an error state, in which
the house light would illuminate and the panel lights would
extinguish. The state of the lights was then reset (house
light off; panel lights on) with a delay of 100–500 ms,
which depended on the communication latency of the
microcontroller with the host computer. The computer
selected a priori which feeder to reward. If the rat selected
this rewarded feeder, it received a 60-�l drop of 10%
sucrose solution (a win) with a short delay determined by
the hardware (typically �50 ms) and the fluid dynamics of
the solution in the delivery system. The state of the lights
did not change. If the rat chose the nonrewarded feeder,
it was left empty (lose) and the apparatus would switch to
the error state (house light on; panel lights off) for 100–
500 ms until the system reset. This brief change in lighting
was intended to signal that reward was not forthcoming.
This delay was shorter than the time required for rats to
locomote from the feeder to the nose-poke port when
barriers are present, and so did not implement a timeout
penalty. We therefore consider the task to be self-paced
within the 15-s limit on trial duration. The computer im-
plemented a “competitive” algorithm similar to previous
studies (Lee et al., 2004; Skelin et al., 2014). Briefly, the
algorithm examined the entire choice and reward history
in the present session to exploit predictable responses
and minimize the number of rewards delivered. This was
done by using sequences of the most recent (the previous
four) choices and reinforcements as a pattern to deter-
mine the probability of choosing each feeder based on the
entire previous choice history within the current session. If
the algorithm detected that either feeder was chosen
more than chance in this context from all previous trials in
the current session (probability �0.5 by the binomial test,
p � 0.05), it was selected to be unrewarded for that trial.

The competitive algorithm, therefore, punished predict-
able response patterns. The optimal solution for the rat
was to be as stochastic as possible in feeder choice. Daily
sessions of the task were 45 min in duration, and rats
were randomly assigned a starting time and testing box
for each session.

All animals were trained on the competitive choice task
by gradually introducing components of the task. Initially,
there were no barriers between the central port and feed-
ers, and 50% of responses were rewarded. Subsequent
sessions used the competitive algorithm. The barrier sep-
arating the nose-poke port and feeders was increased in
discrete lengths (4, 8, and 13 cm) over several sessions
(typically four to five). Training was complete when ani-
mals performed �150 trials with the 13-cm barrier within
the 45-min session over two consecutive days. Training
terminated for any subject that had not met the criterion
by at least 2 d after 50% of the other members of the
cohort had met the criterion. Animals typically completed
training on sessions 8–11. Note that the termination of
training and the inclusion criterion of 100 trial/session
were implemented in attempt to homogenize experience
across cohorts. Although some rats are slow to acquire
the task, less than 5% fail to acquire the task with addi-
tional training. The training and inclusion criteria do not
likely bias the subjects strongly toward select pheno-
types. We modified the training schedule for one cohort
(noted in Results) by limiting trials to 150 trials per day so
that acquisition across sessions would be more homoge-
neous among subjects.

Analysis
Data included up to two sessions per rat; sessions were

included only if rats performed at least 100 trials (n � 98
rats). Population means were computed from means for
each subject computed across all sessions (one point
from each subject). Data were analyzed and plotted with
custom-written code and built-in function of Matlab
2015a (Mathworks, Natick, MA), with the exception of
ANOVA using a within-subjects design (a.k.a. RM-ANOVA),
which was conducted with IBM SPSS V21 (IBM Canada,
Markham, ON, Canada). We report the number of trials
computed as the sum total number of complete trials
within a session. We limited analyses related to reward
dependence to trials in which the rat sampled only one
reward feeder between trials. This was done to eliminate
any effect of visiting the second feeder (the one not
initially chosen) before the next trial. The probability of
lose-shift was calculated as the probability that the sub-
ject would shift feeder choice in trials after reward omis-
sion. Likewise, the probability of win-stay was calculated
as the probability that the subject would repeat the selec-
tion of feeders on trials immediately after rewarded trials.
In defining consecutive trials, we include only trials that
were �20 s apart.

We used the Matlab function “fitnlm” for fitting function
parameters to the relationship between response switch-
ing probability and ITIs. Fits were weighted by the number
of samples used to compute probabilities to minimize the
effect of variance in the data points derived from low
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Table 1. Details of statistical treatments.

Line Hypothesis (H0) Test df

Test

statistic

value Probability Outcome

Power of

outcome

Sample

type

Subjects

excluded (n)

Reason for

exclusion
a Mean of lose-shift probability across the population

is not equal to 0.5.

t 97 19.2 1.00E–34 Reject H0 1 Subjects 0

b Mean of win-stay probability across the population is

not equal to 0.5.

t 97 1.4 0.17 Accept H0 0.74 Subjects 0

c Relationship between win-stay and lose-shift across

subjects is not linearly correlated.

Linear

regression

97 32.2 1.00E–06 Reject H0 0.72 Subjects 0

d Relationship between lose-shift probability and ITI

computed from binned aggregate data from

all subjects is explained by a constant model.

F vs. constant

model

14 398 1.00E–11 Reject H0 1 Binned

probabilities

0

e Mean regression slope computed from the

independent log-linear regression of lose-shift

to ITI is not different from 0.

t 54 40 1.00E–40 Reject H0 1 Subjects 42 Insufficient samples for

regression (criterion

is �25 samples in

4 consecutive bins, after

removing trials that

follow entry of the non-

chosen feeder)
f Relationship between win-stay probability and ITI

for binned data across subjects is explained by a

constant model.

F vs. constant

model

14 12.8 1.00E–03 Reject H0 0.99 Binned

probabilities

0

g Mean regression factor for the quadratic term

computed from the independent regression of

lose-shift to log10(ITI) is not different from 0.

t 63 6.6 1.00E–08 Reject H0 0.96 Subjects 32 Insufficient samples for

regression (criterion

is �25 samples in

4 consecutive bins, after

removing trials that

follow entry of the non-

chosen feeder)
h Relationship between the ITI after wins and the ITI

after losses is explained by a constant model.

F vs. constant

model

97 225 1.00E–26 Reject H0 1 Subjects 0

i Relationship between subject-wise lose-shift

probability and logarithm of the ITI after losses is

explained by a constant model.

F vs. constant

model

97 20.6 2.00E–05 Reject H0 0.99 Subjects 0

j Relationship between subject-wise win-stay

probability and logarithm of the ITI after wins is

explained by a constant model.

F vs. constant

model

97 1.8 0.18 Accept H0 0.6 Subjects 0

k Response time is invariant to the trial position

within sessions, independent of barrier length

(i.e., main effect).

RM-ANOVA 9,864 2.8 0.003 Reject H0 0.96 Binned trials

and subjects

0

l Anticipatory licking is invariant to the trial

position within sessions, independent of barrier

length (i.e., main effect).

RM-ANOVA 9,864 8.8 1.00E–06 Reject H0 1 Binned trials

and subjects

0

m Relationship between the within-session change

in anticipatory licking and total licks (per trial)

is explained by a constant model.

F vs. constant

model

8 38.7 3.00E–04 Reject H0 0.99 Binned trials 0

n The prevalence of lose-shift responding is invariant

to the trial position within sessions, independent

of barrier length (i.e., main effect).

RM-ANOVA 9,864 2.2 0.02 Reject H0 0.89 Binned trials

and subjects

0

o Relationship between the within-session change in

lose-shift prevalence and anticipatory licking is

explained by a constant model.

F vs. constant

model

8 27.8 7.00E–04 Reject H0 0.99 Binned trials 0

p ITI after loss is invariant to the trial position within

sessions, independent of barrier length (i.e.,

main effect).

RM-ANOVA 9,864 29 1.00E–06 Reject H0 1 Binned trials

and subjects

0

q Relationship between the within-session change

in lose-shift prevalence and log ITI after loss

is explained by a constant model.

F vs. constant

model

8 24.8 1.00E–03 Reject H0 0.99 Binned trials 0

r Mean running speed in the presence of shorter

barriers is not different from the mean running

speed in the presence of the longer barriers.

t 18 0.05 0.96 Accept H0 0.96 Subjects 0

s Mean % change in A.U.C for lose-shift vs. log(ITI)

due to increasing barrier length for each subject

is not different from 0

t 16 0.09 0.93 Accept H0 0.95 Subjects

(within)

2 Insufficient samples for

regression (criterion is

�25 samples in 4 bins)
t Mean % change in A.U.C for win-stay vs. log(ITI)

due to increasing barrier length for each subject

is not different from 0

t 14 0.55 0.59 Accept H0 0.87 Subjects

(within)

5 Insufficient samples for

regression (criterion is

�25 samples in 4 bins)
u Mean change in lose-shift probability across

subjects when the longer barrier is introduced

is not different from 0.

t 18 4.7 2.00E–04 Reject H0 0.71 Subjects

(within)

0

(Continued)
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numbers of samples. We quantitatively validated the
model fits to data collected under different conditions by
computing the difference in the area under the curve
(AUC) for each animal in each condition. We chose
constant-sized bins in linear time that had sufficient sam-
ples in all conditions (n � 25) to compute probabilities.
Invariance of conditions should thus result in no change in
the AUC. Some subjects did not have sufficient samples
in each ITI bin for each condition (e.g., non-overlapping ITI
distributions due to motoric slowing) and were excluded
from the AUC analysis. We also used the models of the
ITI–probability relationships to estimate the motoric ef-
fects of treatments, which otherwise present confounds
of the treatments on response probabilities. To do this, we
used the Matlab function “predict” to predict the ex-
pected change in the probability of lose-shift for each
animal according to its change in the base 10 logarithm of
ITIs across conditions (barrier) using the model.

We compared the predictive power of a standard rein-
forcement learning algorithm called Q-learning (Watkins

and Dayan, 1992) with that of win-stay/lose-shift. We first
fitted the parameters of the Q-learning algorithm indepen-
dently to best fit each animal’s responses on one session
as described previously (Skelin et al., 2014). We then used
these parameters on the same data to compute the pre-
dicted most likely next response for each subject. Note
that we are using the same data for testing and training,
which yields the best possible accuracy of the model. The
predictions for the win-stay/lose-shift algorithm were sim-
ply determined by the reinforcement and choice on the
previous trial using the same sessions as for the
Q-learning model and required no parameter fitting. We
then computed the prediction accuracy for each model as
the percentage of correct predictions.

The power of statistical tests was computed with SPSS
for ANOVA or the software package G�Power (http://
www.gpower.hhu.de/en.html) for other analyses (see
Table 1). Superscript letters listed with p-values corre-
spond to the statistical tests shown in Table 1.

Table 1. Continued

Line Hypothesis (H0) Test df

Test

statistic

value Probability Outcome

Power of

outcome

Sample

type

Subjects

excluded (n)

Reason for

exclusion
v Mean difference between predicted and actual

lose-shift decrease due to increased barrier length is

not different from 0.

t 18 0.14 0.89 Accept H0 0.95 Subjects

(within)

0

w Mean change in rewarded trials due to barrier length

is not different from 0.

t 18 2.45 0.02 Reject H0 0.92 Subjects

(within)

0

x The prevalence of lose-shift responding is invariant to

the trial position within sessions, independent

of barrier length (i.e., main effect).

RM-ANOVA 6,109 1.6 0.16 Accept H0 0.42 Binned trials

and subjects

0

y The ITI after loss is invariant to the trial position

within sessions, independent of barrier length

(i.e., main effect).

RM-ANOVA 6,109 5.7 3.00E–05 Reject H0 0.99 Binned trials

and subjects

0

z Anticipatory licking is invariant to the trial position

within sessions, independent of barrier length

(i.e., main effect).

RM-ANOVA 6,109 6.8 4.00E–06 Reject H0 1 Binned trials

and subjects

0

aa The prevalence of lose-shift responding is invariant

to barrier length, independent of changes due to trial

position in the session (i.e., main effect).

RM-ANOVA 1,18 8.3 0.01 Reject H0 0.78 Binned trials

and subjects

0

ab The ITI after loss is invariant to barrier

length, independent of changes due to trial position

in the session (i.e., main effect).

RM-ANOVA 1,18 28 5.00E–05 Reject H0 1 Binned trials

and subjects

0

ac Anticipatory licking is invariant to barrier length,

independent of changes due to trial position in

the session (i.e., main effect).

RM-ANOVA 1,18 0.5 0.52 Accept H0 0.9 Binned trials

and subjects

0

ad Relationship between lose-shift responding and

anticipatory licking is explained by a constant model.

F vs. constant

model

5 10.1 0.02 Reject H0 0.58 Binned trials 0

ae Mean difference in win-stay probability

across subjects computed after a previous

win vs. two previous wins at the same feeder is

not greater than 0.

t 48 10.2 1.00E–13 Reject H0 1 Subjects

(within)

2 Insufficient occurrence of

win-stay-wins sequences

(criterion is �25)

af Mean difference in lose-shift probability across subjects

computed after a previous loss vs. two

previous losses at the same feeder is not

greater than 0.

t 32 2.2 0.99 Accept H0 1 Subjects

(within)

18 Insufficient occurrence of

lose-stay-lose sequences

(criterion is �25)

ag Mean prediction accuracy of the Q-learning model

and win-stay-lose-shift is not different from 0.

t 34 5.2 1.00E–05 Reject H0 0.96 Subjects 0

ah The median probability of lose-shift on the

second training session is not different from

chance (0.5).

Wilcox 17 0.03 Reject H0 0.77 Subjects 0

ai Mean probability of lose-shift did not change across

training or testing days.

RM-ANOVA 15,150 0.54 0.91 Accept H0 1 Subjects,

sessions

0

aj Mean probability of win-stay did not change across

training or testing days.

Wilcox 17 0.01 Reject H0 0.83 Subjects 0

ak Mean probability of win-stay did not change across

training or testing days.

RM-ANOVA 15,150 2.3 5.00E–03 Reject H0 1 Subjects,

sessions

0
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Results
Lose-shift and win-stay responding are uncorrelated
and have distinct time dependences

We trained Long Evans rats to perform a noncued
binary choice task in which they entered a nose-poke port
to initiate a trial and then locomoted to one of two liquid
sucrose feeders on either side of a barrier (Fig. 1A). A
computer algorithm computed which feeder was to be
rewarded on each trial and attempted to minimize the
number of rewards delivered by first using the reward and
choice history of the rat to predict its next feeder choice,
and then selecting the alternate feeder to be rewarded
(Lee et al., 2004; Skelin et al., 2014). The optimal strategy
is a random choice on each trial; win-stay, lose-shift, or
other predictable response are suboptimal on this task
and result in a rate of reinforcement less than the ex-
pected maximum of 50%. Deviation from a random strat-
egy reveals features about the brain’s learning, memory,
and choice mechanisms. We examined 44,898 trials from
98 rats run in five different cohorts over 14 months. The
rats in our sample performed well on the task; they col-
lected reward on a mean of 46.0 � 4.3% of trials (range:
41.7–55.3%) compared with an expected maximum of
50%. This is in line with the performance of nonhuman
primates (47–48%; Lee et al., 2004) and rats (42 � 1.4%;
Tervo et al., 2014) on similar tasks.

We next examined how delivery (win) or omission (lose)
of reward affected rats’ choice on the subsequent trial of
the task. The population showed very robust lose-shift
responding (68.8 � 1.0% of trials; t test that mean is 50%:
t(97) � 19.2, p � 1E–34a), but not win-stay responding
(51.6 � 11.9% of trials; t test, t(97) � 1.4, p � 0.17b).

These strategies were negatively correlated among sub-
jects (r2 � 0.25, F(97) � 32.2, p � 1E–6c; Fig. 1B). In other
words, nearly every subject showed lose-shift respond-
ing, and the more likely they were to shift after losses, the
less likely they were to stay after wins. We next investi-
gated how the effect of reinforcement on subsequent
choice depends on time. Trials of the task were self-
paced, and we computed ITIs as the time between the
first exit of the reward feeder and the next entry into the
poke port. This is the minimum amount of time that re-
ward information, or its effect on choice, needs to be
represented to affect the subsequent response. ITIs were
longer after win trials than after loss trials (Fig. 1C, E),
which is qualitatively consistent with postreinforcement
pauses (Felton and Lyon, 1966) and the frustrative effects
of reward omission (Amsel, 1958) long observed in other
tasks in which animals receive reward on only a fraction of
responses. The temporal effects here are much shorter
than past studies, and other reported pauses seem to
depend on prospective motoric requirements rather than
past actions (Derenne and Flannery, 2007); it is therefore
difficult to compare this aspect of our data to previous
studies that have largely omitted the type of barriers we
have used. As we show later, the longer ITIs after re-
warded trials very likely involve the time spent licking and
consuming the reward.

The effect of the reinforcement type (win/lose) on sub-
sequent choice has a distinct dependence on ITIs. The
probability of lose-shift responding has a prominent log-
linear relationship with the ITI at the population level
(r2 � 0.96, df � 14; F statistic vs. constant model � 389,
p � 1E–11d; Fig. 1D), suggesting exponential decay of the
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influence of reward omission on subsequent choice in
linear time. The probability of lose-shift reaches chance
level (p � 0.5) within 7 s for the population. This could
arise either because of a within-animal process (e.g.,
decaying memory trace) or because of individual differ-
ences among the population (e.g., faster rats have a
stronger tendency to shift). To distinguish among these
possibilities, we tested whether the relationship between
ITI and lose-shift was evident within subjects. Indeed, this
negatively sloped log-linear relationship does fit the be-
havior of most individual subjects (t test that slope of fit for
individual subjects was equal to 0: t(54) � 40.0, p �
1E–40e; Fig. 1D inset). This indicates that the temporal
dependence occurs within individual subjects rather than
exclusively at a population level.

In contrast to the log-linear temporal dependence of
lose-shift, the probability of win-stay shows a log-
parabolic relationship with ITI, in which it first increases to
a peak at �8 s before decreasing (r2 � 0.60, df � 14, F
statistic vs. constant model � 12.8, p � 1E–3f; Fig. 1F).
This log-parabolic relationship also fit the behavior of
most individual subjects (t test that the distribution of
quadratic coefficients fit to each subject has a mean of 0:
t(63) � 6.6, p � 1E–8g; Fig. 1F inset), again indicating a
within-subject effect. In sum, the choices of most individ-
ual subjects in our large sample show dependence on the
time interval since the last reinforcement, consistent with
a temporally evolving neural process. Moreover, the dis-
tinct temporal profiles of lose-shift and win-stay respond-
ing support the hypothesis that they are mediated by
distinct neural processes. The temporal dependencies of
these response types have inverse slopes near the mean
ITI after wins or losses, which thereby suggests an expla-
nation for the negative correlation between the probability
of win-stay and lose-shift. If the ITI after wins and losses
are correlated within animals, then faster animals will
show strong lose-shift and weak win-stay, whereas
slower animals will have weaker lose-shift and stronger
win-stay. Indeed, the ITI after wins is highly correlated
with the ITI after losses (r2 � 0.70, F(97) � 225, p �
1E–26h), and the correlation between subject-wise mean
lose-shift and the logarithm of the mean ITI after loss is
moderately strong (r2 � 0.17, F(97) � 20.6, p � 2E–5i).
However, the correlation between mean log ITI after
wins and win-stay among subjects is weak (r2 � 0.03,
F(97) � 1.8, p � 0.18j), likely because of the nonlinear
dependence of win-stay on log ITI (Fig. 1F) and be-
cause of between-subject variance in the acquisition of
win-stay as described later. In sum, the inverse rela-
tionship between lose-shift and win-stay responding
among subjects (Fig. 1B) can likely be attributed to
subject-wise variation in ITI.

We next tested how motivation may affect the preva-
lence of lose-shift responding by quantifying the variation
of dependent variables within sessions. We computed
means of variables over bins of 15 consecutive trials for
each animal before generating population statistics. We
presume that reasonable behavioral correlates of motiva-
tion in this task are the response time (from poke-port to
feeder) and the number of licks made before reinforce-

ment time (either reward delivery or panel lights extin-
guishing). As rats accumulate rewards within the session,
we presume their motivation decreases, and thereby ex-
pect increased response time and decreased anticipatory
licking. Indeed, response time increases after the first 15
trials (RM-ANOVA main effect trial: F(9,864) � 2.8, p �
0.003k; Fig. 2A), whereas anticipatory licking decreases
(RM-ANOVA: F(9,864) � 8.8, p � 1E–6l; Fig. 2B). Further-
more, anticipatory licking correlates very strongly with the
total number of licks on each trial (r2 � 0.83, F(8) � 38.7,
p � 3E–4m; Fig. 2B inset), further supporting the notion
that this metric reflects motivation. The decrease of lick-
ing within session contrasts the increase of lose-shift
responding within sessions (RM-ANOVA: F(9,864) � 2.2,
p � 0.02n; Fig. 2C). Indeed, these are strongly, and neg-
atively, correlated (r2 � 0.78, F(8) � 27.8, p � 7E–4o; Fig.
2C inset). This suggests that lose-shift responding is not
driven by motivation. On the other hand, the ITI after
losses decreases as sessions progress (RM-ANOVA:
F(9,864) � 29, p � 1E–6p; Fig. 2D), and this decrease (in
log space) is correlated with increased lose-shift (r2 �
0.76, F(8) � 24.8, p � 1E–3q; Fig. 2D inset). In sum, the
movement speed to the feeders and anticipatory licking
decrease within sessions; these changes likely reflect
decreasing motivation during the session. On the other
hand, the ITI after losses decreases, likely because in part
of reduced time spent licking in the feeders. Thus, the fact
that lose-shift responding increases as sessions progress
suggest it is more likely directly related to changes in ITI
than is motivation, in agreement with the overwhelmingly
strong correlational evidence of this relationship at the
population and individual levels (Fig. 1D). Of course, mo-
tivation almost certainly plays a role in modulating the ITI,
and can thereby exert indirect effects on lose-shift re-
sponding.

Change in lose-shift responding is predicted by
change in ITI: evidence for a decaying memory trace

The regression analysis of individual subjects’ re-
sponses indicates that the decrease in lose-shift respond-
ing that occurs as ITIs get longer is observed within most
subjects. We hypothesize that this could reflect a decay-
ing memory trace, analogous to decay or accumulating
interference of short-term memory of other information
(Mizumori et al., 1987; Altmann and Gray, 2002). The
previous correlation analysis is not sufficient to rule out
alternate hypotheses, such as a population component to
the phenomenon. For instance, rats with short ITIs may be
more sensitive to reinforcement omission than rats mov-
ing more slowly. We thus tested these hypotheses by
assessing whether the dependence of choice on previous
reinforcement is altered by inducing longer ITIs. The choi-
ce–ITI curve should translate (shift) to the right with in-
creased median ITI if the choice–ITI relationship is due to
a population effect, but should remain invariant to in-
creasing ITIs if the relationship is due to a decay of a
memory trace. We assessed this by alternating between
short (13 cm) and long (20 cm) barriers on successive
days for one cohort (n � 19 rats, six sessions). Rats
presumably have similar motivation (i.e., thirst) regardless
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of the barrier length. This is supported by the fact that the
decrease in the number of trials (24.0%) is proportional to
the increase in median ITI (25.6%) in the session with
longer barriers, suggesting that the decrease in trials is
due to increased locomotion time rather than decreased
motivation to complete trials. Furthermore, the running
velocity during responses (nose-poke to feeder) is not
affected by the barrier length (19.0 cm/s for shorter and
19.1 cm/s for longer barrier; paired t test of different
means: t(18) � 0.05, p � 0.96r). Last, the amount of
anticipatory licking in feeders is not affected by barrier
length (reported below). Although the longer barrier in-
creased ITIs after either losses or wins, neither the lose-
shift or win-stay relationship with ITI was shifted by this
procedure (Fig. 3A-d). We tested this in two ways: first,
qualitatively by computing the coefficient of determination
(r2) for population data from both the short and long
barrier sessions with respect to the one common model fit
for all data; and second, quantitatively by computing the

difference in the area under the curve (AUC) for each
subject across the two barrier conditions. The ITI bins and
integration range are held fixed for the AUC computation
in each barrier condition for each rat; translation or defor-
mation of the ITI–probability curves induced by the barrier
will therefore lead to different integration values, and the
difference in AUC between barrier lengths will be nonzero.
We computed the difference of AUC for each rat and
tested for a nonzero population mean as a test for an
effect of the treatment. For lose-shift, population data
from each session fit the common model well (r2

short �
0.82; r2

long � 0.68, df � 18), and there was no change in
the mean difference of the AUC (t test that mean differ-
ence is 0: t(16) � 0.09, p � 0.93s; Fig. 3B inset). Likewise
for win-stay, session population data from each condition
fit the common model well (r2

short � 0.69, r2
long � 0.60,

df � 18), and the mean difference of area under the curve
across subjects was not different from zero (t(14) � 0.55,
p � 0.59t; Fig. 3D inset). Because the curves are invariant
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to increases in ITIs, these data support the hypothesis
that the response phenomenon is a result of a within-

subject factor such as a decaying memory trace rather than a
population effect of motivation or movement speed.

0

1

cu
m

ul
at

iv
e 

pr
ob

.

45

50

55

0.5

0.6

0.7

re
w

ar
de

d 
(%

)

pr
ob

. l
os

e
-s

hi
ft

pr
ob

. w
in

-s
ta

y

0.5

0.6

0.7

Δ 
IT

I-
lo

se
 (

s)

shorter barrier
longer barrier

cu
m

ul
at

iv
e 

pr
ob

.

0.5

0.8

0.6

0.4

0.8

0.6

0.4

0

1

0.5

pr
ob

. l
os

e-
sh

ift

pr
ob

. w
in

-s
ta

y

*

***

-1.5

0

1.5

1 10 100
ITI after lose (s)

1 10 100
ITI after lose (s)

1 10 100
ITI after win (s)

1 10 100
ITI after win (s)

Δ 
pr

ob
. l

-s
ft 

(%
)

-15

0

15

Δ 
A

U
C

 (
%

)
-8

0

8

Δ 
A

U
C

 (
%

)

0

-8

8

prediction

20 140
trial number

20 140
trial number

20 140
trial number

***

A

B

C

D

E F G H I

J K L

0.6

0.8

pr
ob

. l
os

e
-s

hi
ft

IT
I a

fte
r 

lo
se

 (
s)

nu
m

. l
ic

ks

4

5

6

1

2

3

0.4

lo
se

-s
hi

ft

0.7

0.5
1.3 2
num. licks

Figure 3. Invariance of lose-shift and win-stay models to movement times. A, Frequency of population ITIs after losses showing that
intervals were increased for long (green) compared with short (dark) barriers. B, Probability of lose-shift computed across the
population independently for short (dark) and long (green) barriers. Both conditions were fitted well by the common model (dark solid
line). The change in the area under the curve computed independently for each subject between conditions shows no difference
(inset), indicating that the mnemonic process underlying lose-shift responding is invariant to the ITI distribution. C, D, Plots of ITI and
probability of stay responses after wins, showing that win-stay is also invariant to barrier length. E, Mean lose-shift responding across
subjects is decreased by longer barriers. F, Within-subject ITI increases after loss trials under long barriers compared with short
barriers. G, Mean within-subject change in the probability of lose-shift due to longer barriers is predicted (magenta dashed line) by
the change in ITI based on the log-linear model. H, Mean probability of win-stay computed across animals is not altered by barrier
length. I, Long barriers led to more rewarded trials per session because of the reduction in predictable lose-shift responding. J, Mean
probability of lose-shift for bins of 20 trials and rats for long and short barriers, showing an increase across sessions for either barrier
length. K, Mean ITI after loss for each barrier condition, showing a decrease within the session. L, Mean number of licks prior to
reinforcement across the session, showing a decrease within sessions but no effect of barrier length. (L, inset) Plots of lose-shift and
licking for each barrier condition, showing that licking is not sufficient to account for variance in lose-shift between barrier conditions.
Statistically significant difference among group means: �p � 0.05, ���p � 0.001. Error bars show SEM.

New Research 9 of 14

November/December 2016, 3(6) e0167-16.2016 eNeuro.org



The lose-shift probability decreases in sessions with
longer barriers (paired t test: t(18) � 4.7, p � 2E–4u; Fig.
3E), and this change is accurately predicted by the in-
crease in ITI (Fig. 3F) using the log-linear model for each
animal (t test that mean change in lose-shift is the same as
the model prediction: t(18) � 0.14, p � 0.89v; Fig. 3G). In
other words, the model is able to predict the change in
lose-shift based on the change in median ITI for each rat.
The overall probability of win-stay does not change (Fig.
3H), which is expected because the change in ITI after
wins is small with respect to the curvature of the win-stay
relationship with ITI. The percentage of rewarded trials is
higher in the sessions with the long barriers, as is ex-
pected because responses are less predictable when
lose-shift responding decreases toward chance level
(paired t test that mean lose-shift is not increased: t(18)
�2.45, p � 0.02w; Fig. 3I). Thus, the log-linear model
accounts for several features of responding, providing
strong evidence that it is an appropriate representation of
the relationship between lose-shift responding and ITI.

We next investigated whether the barrier length affects
within-session correlations, to additionally assess
whether the changes could be due to changes in motiva-
tion or outcome valuation. The prevalence of lose-shift
responding did not vary within the session, partly because
of the high probability of lose-shift in the first few trials in
the long barrier condition (main within-subject effect of
trial RM-ANOVA: F(6,109) � 1.6, p � 0.16x; Fig. 3J). The
general trend, however, appears to be increasing lose-
shift responding as the session progresses, consistent
with the analysis in the previous section (Fig. 2). Also
consistent with this previous analysis, the post-loss ITI
decreases (RM-ANOVA: F(6,109) � 5.7, p � 3E–5y; Fig.
3K), and anticipatory licking decreases (RM-ANOVA:
F(6,108) � 6.8, p � 4E–6z; Fig. 3L) as sessions progress.
Note that we used all trials in the computation of antici-
patory licking to increase samples, whereas we exclude
trials after sampling of both feeders for the other metrics
(see Methods). The longer barriers evoked a reduction of
lose-shift responding (main within-subject effect of length
RM-ANOVA: F(1,18) � 8.3, p � 0.01aa) and increase in ITI
(RM-ANOVA: F(1,18) � 28, p � 5E–5ab) but evoked no
change in licking (RM-ANOVA: F(1,18) � 0.5, p � 0.52ac)
across the session. These data thus support our predic-
tion that motivation decreases within sessions, and that
the increased within-session lose-shift prevalence is
driven by decreases in ITI after losses. Moreover, lose-
shift is again moderately correlated with anticipatory lick-
ing in the shorter hallway condition (r2 � 0.67; F(5) � 10.1,
p � 0.02ad; Fig. 3L inset), but data collected in the long
barrier condition do not fall on the same line. This indi-
cates that some other factor (e.g., ITI) is needed to predict
the relationship between them. This is in stark contrast to
the single log-linear relationship between ITI and lose-
shift that accounts for data from both barrier conditions
(Fig. 3B).

In sum, the data in this section provide very strong
evidence that lose-shift responding decreases with in-
creased barrier length not because the underlying mech-
anism changes, but rather because the distribution of the

ITI shifts to the right (larger values) so that the memory
trace has more time to decay. This indicates that the form
of the memory mechanism underlying lose-shift respond-
ing is invariant to the animals’ movement speed, and the
model can be used to predict changes in lose-shift re-
sponding based on changes in ITI.

Lose-shift responding in the task is inconsistent with
reinforcement learning

We have previously shown that the addition of explicit
terms for lose-shift and win-stay to a standard reinforce-
ment learning (RL) model improves the prediction of rat
choice behavior on this task (Skelin et al., 2014). More-
over, RL does not provide a normative account of the
rapid decay of lose-shift responding. Nonetheless, RL
mechanisms may contribute to win-stay or lose-shift re-
sponding. For instance, a large learning rate will cause
choice to be highly sensitive to the previous trial by driving
large increases (decreases) of the choice after wins
(losses). We thus tested a fundamental prediction of RL:
successive wins or successive losses on the same choice
should have an additive (albeit sublinear) effect on choice.
For instance, the probability of a stay response after a
win-stay-win sequence on the same feeder should be
greater than that after a win irrespective of outcomes in
the past. Formally, this is expressed by the inequality:
Prob�stayn�winn�1, stayn�1, winn�2� � Prob�stayn�winn�1�.
Indeed, we find that the probability of staying after a win-
stay-win sequence is greater than the probability of staying
after a win (paired t test that the above equality is not true for
rats with at least 25 samples of win-stay-win sequences:
t(48) � 10.2, p � 1E–13ae; Fig. 4A). Likewise, the probability
of switching should be increased after a lose-stay-lose se-
quence, formalized by Prob�shiftn�losen�1, stayn�1, losen�2� �
Prob�shiftn�losen�1�. However, we find that this is not the case
(paired t test that the above equality is not true for all rats with
at least 25 samples of lose-stay-lose sequences: t(32) � 2.2; p
� 0.99af; Fig. 4B). Thus, the probability of shifting is not in-
creased after two consecutive losses at one feeder compared
with the probability of shifting after loss on the previous trial,
which is inconsistent with the foundational concept of RL that
the value of the feeder should be additionally decremented by
the second loss, and therefore the likelihood of choosing the
other feeder should be higher (e.g., shift). In sum, the RL con-
cept of reinforcement-driven value learning is consistent with
responding after wins, but not after losses. This suggests that
the neural mechanisms involved in lose-shift are distinct from
those involved in RL. Conventional RL has the facility to imple-
ment win-stay-lose-shift, although not to the extent evident in
the present data. To evaluate the predictive power of a stan-
dard RL algorithm (Q-learning) compared with a pure win-stay/
lose-shift strategy, we computed the prediction accuracy for
each model on one session from each rat in a cohort (see
Methods, n � 19). The win-stay/lose-shift correctly predicted
60 � 1% of responses, whereas Q-learning predicted 52 � 1%
of responses. It is worth noting that we tested the prediction of
Q-learning on the same data that was used to fit the model
parameters so as to produce the highest possible accuracy
regardless of overfitting. Nonetheless, these data provide
strong evidence that the win-stay/lose-shift strategy better ac-

New Research 10 of 14

November/December 2016, 3(6) e0167-16.2016 eNeuro.org



counts for responding on this task (t test of mean prediction
accuracy between models: t(34) � 5.2, p � 1E–5ag). It is un-
surprising that RL does not account for responses on this

particular task because the expected long-term utility of both
feeders is equivalent. If the probability or amount of reward
were unequal at the two feeders, the brain would likely engage
RL systems to overshadow the lose-shift mechanisms present-
ing here.

Lose-shift responding is stationary during training,
whereas win-stay is acquired

We next sought to determine whether the prevalence of
lose-shift responding is related to aspects of the task,
such as the competitive algorithm or barriers, which are
atypical of other tasks. We therefore examined the prob-
ability of lose-shift and win-stay in a new cohort of rats
(n � 17) undergoing a modified training schedule. In
attempt to normalize learning across subjects, rats were
allowed 90 min in the behavioral box to perform up to a
maximum of 150 trials per session over the first 10 days,
and then unlimited trials for 90 min in subsequent ses-
sions (Fig. 5A). Increasingly longer barriers were intro-
duced in sessions 3–8. A few rats initially had a strong
side bias (blue shaded region in Fig. 5B), and conse-
quently tended to stay regardless of loses or wins (blue
shaded region in Fig. 5C, D). The majority of rats, on the
other hand, showed prominent lose-shift responding
across all sessions, even during the second session in the
apparatus in which the competitive algorithm was not
used and the probability of reward was p � 0.5 regardless
of previous choices. Nonetheless, the probability of lose-
shift (median � 0.86, including the animals with side bias)
was significantly higher than chance on this session (two-
sided Wilcoxon signed-rank test for median � 0.5, n � 17,
p � 0.03ah). Moreover, the probability of lose-shift in the
population did not vary across the training sessions
(within-subjects main effect of session RM-ANOVA:
F(15,150) � 0.54, p � 0.91ai; Fig. 5C). In contrast, the
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probability of win-stay was initially less than chance (Wil-
coxon; n � 17, p � 0.01aj) and increased across testing
sessions (RM-ANOVA: F(15,150) � 2.3, p � 5E–3ak; Fig.
5D). These features of the data would be even stronger by
omitting the sessions in which rats had a large side bias.
These data reveal that lose-shift responding is prevalent
across all sessions, whereas win-stay is acquired during
training, again supporting the hypotheses that they are
mediated by separate processes. The pronounced lose-
shift responding in the first several sessions indicates that
it is not the barriers or competitive algorithm that induces
animals to utilize this response strategy.

Discussion
The present data show that reward omission has a

pronounced short-lasting effect on subsequent choice,
which can be described by the classic notion of lose-shift
responding that decays over several seconds. Several
features of rodent lose-shift are distinct from those of
win-stay: (a) their probability is not positively correlated
among subjects; (b) their temporal dependence on ITI is
dissimilar; and (c) lose-shift is prevalent from the first day
of training and does not diminish, whereas win-stay is
acquired during training. These data provide further evi-
dence that win-stay and lose-shift are mediated by dis-
sociated neural mechanisms. The temporal dependence
of lose-shift responding presents a confound for the study
of choice in rodents and other animals that likely influ-
ences performance in the many operant choice tasks with
short ITIs. Moreover, manipulations that affect ITI (e.g.,
drugs, stress) will alter the prevalence of lose-shift and
win-stay responses. Studies that do not control for this
are difficult to interpret because tasks solvable by lose-
shift will be facilitated by reduced ITI independently of
other putative mechanisms. Lose-shift responding is thus
an important latent variable to consider in behavioral
studies of choice.

The highly prominent lose-shift responding over the 7-s
interval considered here is not explained by conventional
RL theory. In particular, the rapid decay of switching
probability during the ITI has no normative basis in RL.
Furthermore, that the probability of shifting after a lose-
stay-lose sequence is not greater than that of shifting after
a single loss is counter to the fundamental prediction of
RL that subsequent losses on the same feeder should
decrement the value of the action and therefore increase
the probability of switching. On the other hand, the prop-
erties of win-stay are more consistent with RL, in that
consecutive wins do increase the probability of a stay
response. The dependence of win-stay on ITI, however,
remains unexpected. This dissociation is counter to con-
ventional RL formulations, in which wins and losses influ-
ence choice by modulating a singular value attached to
actions or outcome states (Watkins and Dayan, 1992;
Sutton and Barto, 1998). We instead propose that the
lose-shift phenomenon can be characterized as an intrin-
sic choice reflex because of its prevalence in the task
(despite being a non-optimal solution), its failure to dimin-
ish over thousands of trials, its reliable time course, and

its apparent independence of neural systems involved in
executive functions (Skelin et al., 2014).

The brief lose-shift system involving the sensorimotor
system studied here is dissociated from the reinforcement
learning signals in ventral striatum and orbitofrontal cortex
observed in many other studies (Samejima et al., 2005;
Daw et al., 2006; Paton et al., 2006; Matsumoto et al.,
2007; Schönberg et al., 2007; Hori et al., 2009; Ito and
Doya, 2009; Bromberg-Martin et al., 2010b; Gan et al.,
2010; Alexander and Brown, 2011; Day et al., 2011). We
argue that lose-shift is an adjunct to RL in the guidance of
choice; the neural mechanisms for RL likely solve prob-
lems requiring processing of value or utility over many
trials to establish responding rates to various choice op-
tions, whereas the lose-shift mechanism likely introduces
exploration among the choice only on a trial-by-trial scale.
The behavioral purpose of its 7- to 8-s time course is
unclear, but this temporal window is supported by some
of the few other reports that provide relevant evidence.
Direct optogenetic activation of D2DR-expressing striatal
cells in the dorsal striatum of mice results in place avoid-
ance for about 10 s (Kravitz et al., 2012), and the behav-
ioral effect of losses during a lever-pressing task is
observed only when ITIs are less than �15 s (Williams,
1991). Moreover, win-stay/lose-shift behavior is promi-
nent in pigeons only when ITIs are �10 s (Rayburn-
Reeves et al., 2013). The emergence of rapidly decaying
lose-shift behavior across species and tasks, even when it
is not needed or is suboptimal, suggests it is a general
feature of choice intrinsic to its underlying mechanisms.

The memory trace supporting lose-shift is only one of
several memory systems in the brain. Rats can maintain
information related to reinforcement over much longer
intervals, and performance on these longer-interval tasks
is often sensitive to disruption of the prefrontal cortex
(Euston et al., 2012). This suggests that goal-directed
behavioral control involving prefrontal cortex has a longer
memory frame than the one considered here. We specu-
late that this difference in time frame accounts for the
discrepancy of our results from that of devaluations ex-
periments, which indicate that behavior mediated by sen-
sorimotor striatum is not sensitive to changes in the
affective value of reinforcements (Yin et al., 2004; Quinn
et al., 2013). This result has had a profound influence on
many current theories of choice (Daw et al., 2005; Balleine
and O’Doherty, 2010; Gruber and McDonald, 2012; van
der Meer et al., 2012). In devaluation, the affective state of
the animal is altered with either satiation or illness paired
with the outcome, and the memory time is hours to days.
Many regions of the prefrontal cortex and subcortical
limbic structures encode affective information over time
periods spanning minutes to months (Euston et al., 2012)
and project heavily to the medial and ventral striatum
(McGeorge and Faull, 1989; Vertes, 2004; Voorn et al.,
2004). It is not surprising, then, that devaluation depends
on medial striatum and not dorsolateral striatum. The
lose-shift phenomenon studied here occurs over several
seconds, and reward omission likely does not elicit a
strong affective component because rats are denied only
a small amount reward on each trial relative to the total
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reward intake over the session. We therefore propose that
the inverse role of the dorsolateral striatum in devaluation
and lose-shift behaviors derives from the differences in
memory time interval and sensory domain (affective vs.
sensory). In other words, the sensorimotor systems have
explicit access to recent sensory information (including
that related to reward) needed for lose-shift, but not direct
access to remote affective information as needed for
devaluation effects.

The percent of rewarded trials in our sample is on par
with that of rats (Tervo et al., 2014) and nonhuman pri-
mates (Lee et al., 2004) competing against the same
algorithm, albeit with different motoric demands. The
probability of lose-shift alone is not reported in either
study, but the non-human primates show only a slight
amount of win-stay/lose-switch (Prob � 0.53–0.57) in the
competitive task, similar to humans (Prob � 0.54–0.57;
Hu et al., 2010). We speculate that the primate prefrontal
cortex normally suppresses lose-shift by the sensorimotor
striatum, so that primates lose-shift less than rats. Rats
appear to strongly use sensorimotor systems to respond
during the task, and therefore exhibit high amounts of
lose-shift throughout training and testing.

Lose-shift responding is suboptimal in the present task,
but its persistence is not likely to be an artifact of the task
design. Lose-shift responding is prevalent on the second
day of training without barriers and without the competi-
tive algorithm, and is invariant across training and testing.
Other experiments have also revealed that rats do not
perform optimally on binary choice tasks with dynamic
reinforcements (Sul et al., 2011). Last, lose-shift is perva-
sive across many species and tasks (Mishkin et al., 1962;
Schusterman, 1962; Olton et al., 1978; Evenden and Rob-
bins, 1984; Means and Fernandez, 1992; Komischke
et al., 2002; Lee et al., 2004; Frank et al., 2007; Amodeo
et al., 2012; Rayburn-Reeves et al., 2013; Skelin et al.,
2014; Wang et al., 2014), and those abovementioned
studies that report timing effects are consistent with the
decay in our data. In sum, several lines of indirect evi-
dence indicate that the lose-shift phenomenon studied
here is not unique to the task, but rather appears to be a
default strategy in many situations, and is therefore rele-
vant to many other behavioral tests with short ITIs.

The properties of lose-shift revealed here suggest it is
an intrinsic feature of neural choice mechanisms in the
striatum that can be described as a choice reflex; it is
unlearned, prevalent in multiple cohorts, persistent, has a
reliable time course, and involves the sensorimotor stria-
tum. As such, the addition of explicit terms in RL models
that include these properties will likely continue to im-
prove model fits to data, particularly in tasks with short ITI
and sensorimotor solutions (Ito and Doya, 2009; Rutledge
et al., 2009; Skelin et al., 2014).

In conclusion, lose-shift responding plays a simple but
important role in trial-by-trial choice adaptation in some
situations, particularly those with repetitious actions and
rapid trials, and appears to work in parallel with reinforce-
ment learning and other control mechanisms in dissoci-
ated neural structures to guide choice. Our data provide
further evidence that theories of sensorimotor striatum

function related to choice behavior must expand from the
current focus on gradual sensory-response associations
and habit formation (Jog et al., 1999; Daw et al., 2005;
Balleine and O’Doherty, 2010; Devan et al., 2011; Gruber
and McDonald, 2012; van der Meer et al., 2012) to also
include rapid response adaptation that is dependent on a
decaying memory trace.
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