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Visual Abstract

In multisource, “cocktail party”
sound environments, human and an-
imal auditory systems can use spatial
cues to effectively separate and fol-
low one source of sound over com-
peting sources. While mechanisms to
extract spatial cues such as interau-
ral time differences (ITDs) are well
understood in precortical areas, how
such information is reused and trans-
formed in higher cortical regions to
represent segregated sound sources
is not clear. We present a computa-
tional model describing a hypothe-
sized neural network that spans
spatial cue detection areas and the
cortex. This network is based on re-
cent physiological findings that corti-
cal neurons selectively encode target
stimuli in the presence of competing
maskers based on source locations
(Maddox et al., 2012). We demon-
strate that key features of cortical re-
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kproblem.

Spatial cues are known to be critical for human and animal brains when following specific sound sources
in the presence of competing sounds, but the exact mechanism by which this happens is not clear. The role
of spatial cues in localizing single sound sources in the midbrain is well documented, but how these
extracted cues are used downstream in the cortex to separate competing sources is not clear. We present
a computational neural network model based on recent recordings to bridge this gap. The model identifies
specific candidate physiological mechanisms underlying this process and can be extended to construct
engineering solutions that may be useful for hearing assistive devices for coping with the cocktail party
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sponses can be generated by the model network, which exploits spatial interactions between inputs via lateral
inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader
acoustic space when there is no competition. We present the model network along with testable experimental
paradigms as a starting point for understanding the transformation and organization of spatial information from
midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for
hearing-assistive devices in solving the cocktail party problem.

Key words: auditory model of spatial processing; cocktail party problem; computational modeling; spatial au-

ditory processing; spatial segregation

Introduction

The problem of recognizing and processing individual
auditory objects in complex listening environments, the
“cocktail party problem”, was recognized over 50 years
ago (Cherry, 1953); however, its neural mechanism re-
mains poorly understood. Human and animal auditory
systems selectively segregate and follow a selected
sound source in the presence of competition to make
sense of multiple-source environments (Bregman, 1994).
Spatial cues enable listeners to segregate and follow
individual sources, as demonstrated by human and ani-
mal studies (Hine et al., 1994; Dent et al., 1997, 2009;
Darwin and Hukin, 1998; Arbogast et al., 2002). Although
precortical neurons have been extensively shown to be
selectively tuned to spatial cues, such as interaural time
difference (ITD; Knudsen and Konishi, 1978; Yin and
Chan, 1990; Pefia and Konishi, 2001; Képpl and Carr,
2008; Devore et al., 2009), how spatial information from
spatial cue detection areas is relayed to and used in
higher cortical areas is not clear (Vonderschen and Wag-
ner, 2014). Recent experiments on cortical responses
revealed that whereas spatial tuning for single sound
sources is broad, simultaneous competing sources in-
crease spatial selectivity (Maddox et al., 2012; Middle-
brooks and Bremen, 2013). Although these findings shed
light on the spatial encoding capabilities of the cortex,
neural mechanisms capable of generating such capabili-
ties remain unknown. The goal of this study is to provide
a computational model consistent with existing physio-
logical evidence to describe the transformation between
precortical areas and the cortex, which can selectively
encode target stimuli when presented with competing
sources in space. Specifically, we present a model net-
work that replicates the spatial responses observed in a
study by Maddox et al. (2012), providing a mechanistic
solution to the spatial segregation of independent
sources.
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Maddox et al. (2012) demonstrated that, although the

coding of song identity is not strongly impacted by stim-
ulus location in quiet, location does have a significant
effect on neural coding when there is a competing
masker. In their experiments, two birdsongs were first
presented independently from one of four stimulus loca-
tions (Fig. 1a). The neuron’s spatial performance was
studied using the discriminability index, a metric quanti-
fying the neural coding of song identity at each location. A
larger difference in neural responses to the two songs
gives higher song discriminability, indicating a location
where birdsong is more “intelligible” to the neuron. For the
target song alone (“clean”) case, similar discriminability
across locations (Fig. 1a) indicates broad spatial tuning,
where all spatial locations are similarly encoded within
this neuron. In the masked conditions illustrated in Figure
1, b and c, a noise masker is played concurrently with a
target, and the two are covaried in location for all possible
combinations. A spatial discriminability grid of responses
to all recorded target and masker location combinations
(Fig. 1d) shows that for this unit, discriminability is better
at a few “hotspots” shaded in lighter colors. These pat-
terns indicate a sharpened spatial preference for encoded
song stimuli in the presence of a competing masker at
these locations.
In this paper, our goals are to construct a model network
capable of replicating key features of the experimentally
observed cortical responses: (1) similar discriminability for
target songs in quiet at any location, indicating broad
tuning and the ability of neurons to monitor the entire
acoustic space in quiet; and (2) the emergence of hot-
spots where coding of song identity is enhanced at select
stimulus locations in the presence of a second competing
sound (the masker). The network can be adjusted to
model a diverse range of spatial responses, demonstrated
by fitting the population of neurons reported in the Mad-
dox et al. (2012) study. Finally, we propose a way to
extend this network to design engineering solutions that
may be useful for achieving spatial stream segregation in
hearing-assistive devices.

Methods

Network model overview

The network is composed of a three-layer structure,
where the bottom layer receives precortical input, and the
final layer provides the cortical output, which is then
compared to the recordings. The model architecture,
model mechanisms and parameters, and simulated pre-
cortical input are explained in separate sections below.
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Figure 1. Recorded cortical neurons develop sharper spatial responses to targets when a noise masker is present (Maddox et al.,
2012). a, Responses to target alone. Two bird songs—Song 1 and 2 (spectrograms shown in top left)—are played separately from
four locations —90°, 0°, 45°, and 90°. Recorded raster plots of responses to the two birdsongs are shown at each azimuth location.
Positive degrees indicate locations contralateral to recording site. The color-coded discriminability values for each location are shown
in the horizontal grid on the upper right. (Color map for all panels is shown in d, top row.) b, ¢, Responses to target with masker.
Masker and one target song are played concurrently from one (colocated) or two (separated) of the four stimulus locations. A masker
fixed at 0° or —90°, indicated by a black or grey boxed M, respectively, whereas the target song is played at one of the locations
shown. As in a, recorded raster responses from each target location are shown, and discriminability values are shown in the colored
grid of values (top right). d, Discriminability values for all location combinations. The top grid (single row) of numbers are the
discriminability values for the “clean” (target-alone) conditions. In the lower, spatial discriminability grid, each block indicates a target
and masker location combination. The rows indicated by a black or grey boxed M are cases where the masker is fixed at 0° or —90°.
Blocks in all grids are colored according to the color scale given at the top of this panel.

Network model architecture

The structure of the model, which was custom written in
MATLAB, can be seen in Figure 2a—c. The basic architec-
ture consists of an input layer with four spatial input
channels corresponding to —90°, 0°, 45° and 90° to
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mirror the experimental design of Maddox et al. (2012),
and an intermediate layer of processing that includes
excitatory relay neurons (R) and inhibitory neurons (1), and
an output cortical neuron (C). The detailed network con-
nectivity is determined by the additional lateral inhibitory
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Figure 2. Lateral inhibition in the model can account for the spatial tuning and spatial segregation properties of recorded units. a—c,
Left, Model structure. Center, Simulated spatial grid. Right, Raster plots for stimulus conditions indicated by dashed or solid squares
in the grid. Top right, Inset, The simulated discriminability for the clean (no-masker) case indicating broad spatial tuning. This clean
case is not impacted by the addition of lateral inhibition, and is identical for all networks shown. a, Basic model structure with no lateral
inhibitory connections. Simulated multisource spatial grid in model without lateral inhibition lacks the spatial diversity observed in the
data. b, Spatial grid produced by the model with one inhibitory connection between 0° and —90°, shows an increase in discriminability
when target and masker are presented at 0° and —90°, respectively. ¢, Model with additional inhibitory connections simulates the
spatial response of the recorded unit shown in Figure 1d. d, Subthreshold responses of relay and cortical neurons, R1, R2, and C (b,
left), for the labeled time segment (b, right) of one trial when target is presented at 0° and masker at —90°. Direct excitatory currents
to R1 (R1 Conduc: black curve) are offset by inhibitory currents from 12 (R1 Conduc: magenta curve), and R1 is unable to reach spiking
threshold, as seen in its voltage trace (R1 Voltage: black curve). In contrast, R2 is able to relay its temporal information to C, whose
spiking pattern (C Voltage) resembles that of R2 (R2 Voltage).
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connections as illustrated in Figure 2. Our goal was to
match the response of the output cortical neuron C in the
model to the main features of the neurons recorded in the
experiments by Maddox et al. (2012).

Biological rationale

The convergence architecture was hypothesized based
on physiological data showing selected spatial tuning
responses in the midbrain (Knudsen and Konishi, 1978;
Yin and Chan, 1990; Képpl and Carr, 2008), in contrast to
the broad tuning observed in the cortex (Stecker et al.,
2005; Higgins et al., 2010). The spectrotemporal response
properties of the input layer neurons were modeled after
experimentally measured spectrotemporal receptive
fields (STRFs) of neurons in the avian midbrain (Amin
et al., 2010; see Network model input). We modeled four
spatial input channels as described above. In the biolog-
ical system, there could be more input channels tuned at
different locations at a finer spatial resolution. The spatial
tuning of zebra finch midbrain neurons remains unknown.
We began with the simplest assumption that there were
no interactions across spatial input channels, and later
relaxed this assumption to allow spatial overlap between
the input channels and demonstrated that the model re-
mains robust over a range of spatial overlaps (see Spatial
tuning width at the input stage and Fig. 4).

This model architecture is consistent with the inhibitory
(and relay) neurons being located anywhere in the pro-
cessing stream between the input (midbrain) neurons and
the output cortical neuron. It is possible that the inhibitory
(and relay) neurons are located in the thalamus. Inhibitory
neurons have been found at the thalamic level in birds
(Pinaud and Mello, 2007) and some mammals (Winer,
1992). Alternatively, inhibitory (and relay) neurons might
be located within cortex prior to the output cortical neu-
ron. There is extensive evidence supporting the presence
of inhibitory neurons at the cortical level, both in birds and
mammals (Pinaud and Mello, 2007; Oswald et al., 2006).

Model neurons

All neurons in the model are integrate-and-fire neurons.
Specific parameters used are described below. Resting
potential was —60 mV, spiking threshold was —40 mV,
and the reversal potential for excitatory currents was 0 mV
for all neurons. In relay neurons, the reversal potential for
inhibitory currents was —70 mV. In interneurons, EPSC
was modeled as an alpha function with a time constant of
1 ms. In relay neurons, both EPSC and IPSC were mod-
eled as the difference of a rising and a falling exponential,
where rise and fall time constants were 1 and 3 ms, and 4
and 50 ms, respectively. An absolute refractory period of
3 ms was enforced in all neurons. These values are phys-
iologically plausible (Froemke et al., 2007). In the cortical
neuron, spike-rate adaptation was implemented by a hy-
perpolarizing conductance term that increases after firing
and then recovers to zero exponentially (Dayan and Ab-
bott, 2001). The adaptation time constant was 400 ms,
and the strengths of the adaptation conductance for sim-
ulated neural units are shown in Table 1. Input synapses
to the cortical neuron also have synaptic depression,
which were modeled as described by Varela et al. (1997).
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Table 1. STRFs input and adaptation conductance used for
each simulated neural unit

STRF no. Neural units

Adaptation conductance

1 3,6,9,10, 11, 13, 21,23 0.025
14, 22 0.04
2 15 0
3 29 0.12
27 0.1
4 7 0.07
5 19 0.06
6 2 0.06
7 5 0.2
25 0.16
20, 32 0.07
1,12, 33 0.08
9 16, 23 0.09
10 8 0.09
11 4 0.09
12 26, 28, 31 0.03
13 17 0.01
18 0.03

STRF input and adaptation conductance were fit to best match the firing
characteristics of each neuron recorded in the Maddox et al. (2012) study,
whereas other neuron modeling parameters were fixed as reported above.

Although this quantitative formulation was applied to vi-
sual cortical synapses in Varela et al. (1997), synaptic
depression is also observed in auditory thalamocortical
circuits (Atzori et al., 2001; Rose and Metherate, 2005;
Oswald et al., 2006; Levy and Reyes, 2012). We used a
single synaptic depression component with fixed time
course of 80 ms, and synaptic depression factor of 0.95,
to model the experimental data by Maddox et al. (2012).
Both adaptation and synaptic depression were imple-
mented in the simulations shown in Figures 2 and 4 for all
modeled neurons.

Parameter fitting

Parameters were held constant throughout all simula-
tions, except for the synaptic strengths and the strength
of neural adaptation. To fit each recorded neuron, we first
fit the general neural dynamics and baseline discriminabil-
ity values by adjusting the strength of neural adaptation
and the synaptic strengths without lateral inhibition. The
specific values of neural adaptation used can be found in
Table 1. The feedforward synaptic weights (input to relay
neuron) were then adjusted to match the discriminability
values for clean and co-located cases at each azimuth,
whereas other parameters were held the same. For lateral
inhibition, the synaptic strength of each inhibitory connec-
tion was chosen to model the recorded discriminability of
its corresponding song and masker location. Our goal in
this study was to fit the spatial discriminability grids ob-
served experimentally.

Network model input

The model input is composed of four spatial input chan-
nels corresponding to the stimulus locations used in the
experiment by Maddox et al. (2012) (Fig. 2). Each channel
receives simulated spike train responses of neurons at
midbrain level as input. Input responses were simulated
with STRFs modeled after typical STRFs obtained from
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STRF input generation

stimulus STRF(1f) | Half-wave | folt) [ Rate |instantaneous | Spiking model
spectrogram ’ ”| rectification "|normalization| rater(t) | model ' spike input
temporal normalization
phase P; factora

Figure 3. lllustration of model input generation process. The stimulus spectrogram was convolved with STRFs modeled after midbrain
neurons, followed by half-wave rectification, then rate normalization to generate an instantaneous output-firing rate. This firing rate
was then used to generate spikes using a spiking model (see Materials and Methods for details). The values of temporal phase P, and

normalization factora used were reported in Table 2.

the midbrain (MLd) of zebra finch songbirds (Amin et al.,
2010). The input generation process is illustrated in Figure
3 and explained in detail below. For the majority of sim-
ulations, the azimuth response field for each modeled
neuron was simulated with a Gaussian function, and
across the population, there was minimal overlap be-
tween response fields. (Fig. 4, bottom left). This no-
overlap assumption effectively means that for the azimuth
locations used in the experiment, neighboring sources are
outside the spatial receptive field, and each input channel
will only respond to stimuli from its corresponding loca-
tion. The effect of wider spatial tuning was also studied by
running separate simulations with wider, overlapping
Gaussian inputs (see Results).

Model input using STRFs

STRFs were used to simulate input responses. These
STRFs were modeled using the product of Gabor func-
tions in the time and frequency domain (Qiu et al., 2003):

STRF(t, ) = G(f) - H(t), where
G(f) = e 08/ . cos[2m - Q- (f — f,)], and

H(t) = e 0Slt-/i’ . cos[2m - ), - (t — to) + P).

The frequency range is determined by f,, the best fre-
quency; oy, the spectral bandwidth; and (), the best spec-
tral modulation frequency, which were chosen and fixed
at 4300 Hz, 2000 Hz, and 50 us, respectively, to generate
a broadband STRF for all simulations based on physio-
logical ranges reported in the MLd of zebra finch song-
birds by Amin et al. (2010). Temporal parameters t,, the
temporal latency; a;, the temporal bandwidth; and (},, the
best temporal modulation frequency, were assigned 7 ms,
4.5 ms, and 56 Hz, respectively, based on recorded phys-
iological values (Amin et al., 2010).

The normalization factor and temporal phase (P, were
varied to match the neuron-specific raster responses
seen in the neural recordings of the Maddox et al. (2012)
study. Other STRF parameters were largely fixed for sim-
plicity, but the model is robust to variations in these
parameters. Specific values of used parameters are
shown in Table 2.

STRF modeled input spike trains
As shown in Figure 3, STRFs were first converted to firing
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rates by convolving the stimulus spectrogram with the
model STRF and half-wave rectifying so that rate outputs
were positive. For each simulated neuron, the firing rate
was normalized by factor a to adjust the final mean firing
rate: r(t) = a-ry(t). Finally, a Poisson spike model with a
refractory period of 6 ms generated the neural response
spikes used as the network model inputs, consistent with
the instantaneous rates.

Spatial tuning width at the input stage

Spatial tuning width at the midbrain level varies across
species, and is notably broader relative to the behavioral
tuning for some mammals (Vonderschen and Wagner,
2014). To investigate whether the network model is func-
tionally feasible with broader spatial tuning, the effect of
spatial tuning width variation was studied by running sim-
ulations on an example neural unit and its neural network.
The spatial tuning curves of input neurons were assumed
to be Gaussian functions with varying standard deviations
(SD), as shown in Figure 4. Tuning widths (twice the SD o)
of 15° or smaller result in no crosstalk between the input
channels separated by 45°, as implemented in the main
experiment. For the model unit used to test the effect of
overlap (Table 1, unit 2), the tuning was then increased to
show differences in model responses.

Table 2. Parameters used for each type of input model STRF

STRF no. Normalization factor P; (rad)
0.08 1.4608
0.1 1.4923
3 0.07 1.508
4 0.1
5 0.12 1.5237
6 0.1 1.5394
7 0.07 1.5425
8 0.087
0.15 1.5582
10 0.05
11 0.08
12 0.16 1.5598
13 0.17 1.5708

Temporal phase P, and normalization factor are adjusted to match the re-
corded responses of the corresponding neurons, while other temporal and
spectral parameters are held fixed and reported above.
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Figure 4. Network performance is robust to broader spatial tuning of inputs, as shown by extended simulations on the example unit
previously displayed in Figure 2. a, lllustrations of Gaussian spatial tuning curves of varying widths, defined by twice the standard
deviation (20). b, Results of spatial grid simulations for broadened input tuning width 20 at 40°, 80°, and 120°, compared with the
no-overlap case (<15°) on the bottom. The cross-correlation coefficient and deviation of the simulated results are plotted in green and
purple, respectively, on separate horizontal axes. On the cross-correlation coefficient axis (top), larger values (closer to unity) indicate
a better fit, whereas the deviation axis (bottom) shows better fits at smaller values closer to 0%. For reference, shaded areas and
dotted lines indicate the mean and standard deviation of cross-correlation coefficient and deviation values, for original simulated
population using non-overlapping inputs. As the spatial tuning of input units was broadened from <15° to 120°, the correlation
coefficient (green dots) and the deviation (purple dots) degraded gracefully. The correlation coefficient remained above 0.8 and the
deviation remained below 10% for the broadest tuning width. ¢, lllustrations of simulated spatial grids with input widths of 40° and
120°. The 40° spatial grid can be compared with the no overlap spatial grid shown in Figure 2c. The two grids show a similar visual
pattern, which is quantified by the similar deviation and cross-correlation coefficient values shown in b. The 120° grid maintains the
general pattern but has overall higher discriminability throughout.

Discriminability index: evaluating stimulus encoding
and spatial tuning

The discriminability index calculates the level of dissimi-
larity between spike trains generated in response to two
songs (Wang et al., 2007). For both sets of ten spike trains
recorded from the same neuron, a random spike train
from each song is chosen as a template, and the remain-
ing spike trains are assigned to the closest template
based on the van Rossum spike distance metric, which
measures discrimination between two spike trains (van
Rossum, 2001). This yields a perfect discriminability of
100% for an ideal response pair, and a chance discrim-
inability of 50% for an indiscriminable response pair.

Results

Cross-channel lateral inhibition enables
the network to match experimentally

observed neural responses

As described in Materials and Methods, a multilayer net-
work model (Fig. 2a, left) of integrate-and-fire neurons
was constructed to replicate selective spatial responses
to competing sound sources. Input layer neurons repre-
sent neurons at the spatial cue detection level, and re-
ceive input generated by the model in Figure 3 when a
stimulus is presented at the corresponding location (see
Materials and Methods). Thus, there are four input “chan-
nels” corresponding to each speaker location in the ex-

Quantifying goodness of fit

To assess the fit of the model to individual units from the
original study, we calculated the average deviation and
correlation coefficient between the discriminability values
for clean and masked responses of the data and that of
the simulation. The average deviation is the mean value of
the absolute difference between each corresponding dis-
criminability value.

January/February 2016, 3(1) e0086-15.2015

periment. The four input units excite four corresponding
channels of relay neurons and interneurons in the middle-
layer, which inherit their spatial tuning. Relay neurons
converge to excite the cortical neuron (Fig. 2a, left), mak-
ing it broadly tuned to stimuli from all directions in the
clean (i.e., no masker) case (Fig. 2a, inset, discriminability
grid), as observed in the data (Fig. 1a; see Materials and
Methods, Network Model Architecture). However, in this

eNeuro.sfn.org
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network (Fig. 2a, left), the spatial discriminability grid is
relatively uniform (Fig. 2a, center column), unlike that
observed in the data (Fig. 1d). Thus, this basic network
replicates the broad response in the target alone case, but
fails to produce the configuration-dependent hotspots
observed in the data.

Introducing lateral inhibition from inter-neurons across
spatial channels allows the target response to suppress
the masker response when presented at the tuned loca-
tions, generating a hotspot of performance for a given
target and masker location combination (Fig. 2b). Figure
2d depicts the subthreshold conductance and voltage
changes in the relay and cortical neurons in the expanded
time segment. Whereas neuron R2 spikes predictably in
response to increases in EPSC, R1 is unable to spike
following its EPSC input due to long-lasting suppression
by lateral inhibition as seen in the increase in IPSC (Fig.
2d, bottom, magenta trace) from I2. In this case, the
voltage response of the cortical neuron resembles that of
R2 and the 0° target input (Fig. 2d). This is seen in the
raster plots for the same stimulus paradigm, which resem-
bles the target alone condition (Fig. 2b, bottom right),
indicating that the cortical neuron is able to follow the
target and largely ignore the masker. Note that when the
locations of target and masker are reversed, discriminabil-
ity decreases due to the masking of target by noise (Fig.
2b, center and top right). The preferred spatial location
combinations in the recorded unit (Fig. 1d) can be mod-
eled by introducing additional lateral inhibitory connec-
tions as shown in Figure 2c.

By adjusting model parameters, we were able to satis-
factorily fit 32 of 33 units recorded in the original study.
The model was largely robust in the parameter ranges we
tested (see Materials and Methods for details). We used
two parameters to assess the closeness of fit between
each unit and its model simulation. Average deviation
measures the closeness of the discriminability values of
the simulation compared with the data in units of discrim-
inability percentage, and was 3.39+0.97% for all simu-
lated units. The correlation coefficient ranging from —1 to
1 measures how closely the pattern of the simulated grid
agrees with the experimental grid, and was 0.94+0.04 for
the simulated units. The neural unit that did not have an
overall satisfactory fit had a spatial grid that was very
uniform, where discriminability variations within the grid
were small and random. As a result, the simulated fit had
a deviation value within the normal range, but a very low
cross-correlation coefficient.

It is noteworthy that the model network without lateral
inhibition showed a relatively uniform spatial grid (Fig. 2a,
center column), unlike the experimental data. This net-
work did include adaptation and synaptic depression (see
Materials and Methods, Model neurons). Thus, without
lateral inhibition, adaptation and synaptic depression are
not sufficient to explain the experimentally observed hot-
spots in the spatial grid.

Spatial tuning
The sharpness of spatial tuning curves was varied to test
whether the model can describe the data with broader
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spatial input at the midbrain level. In the initial simulations,
we assumed no crosstalk between spatial channels,
which corresponds approximately to a Gaussian spatial
tuning curve of width 2o (twice the SD o) <15°, where o
is the SD of the Gaussian function. As the width in-
creased, more and more overlap occurred between chan-
nels, as shown in the left column of Figure 4a.

For the simulations shown in Figure 4, spatial tuning
width 20 was increased to 40°, 80°, and 120°, respec-
tively, while keeping all other parameters identical. The
results of broadened tuning widths are shown in Figure
4b,c. The goodness of fit, as quantified by deviation and
cross-correlation coefficient, diminished as tuning width
was broadened. The mean and standard deviation of
these two measures calculated from the population of
simulated units, is plotted as dotted lines and shaded
areas in Figure 4b for reference. In the 40° case, both
deviation and cross-correlation coefficient remain within
the range for the population of simulated units. The spatial
tuning grid for 40° seen in Figure 4c (bottom), also main-
tains the general features of the data (Fig. 1d) and the
original minimum overlap simulation (Fig. 2c, center).
Therefore, this network model remains robust when spa-
tial tuning width is increased to 40°. Even at a spatial
tuning width of 80°, which corresponds to a fairly large
overlap, the correlation coefficient remains relatively high
at 0.91 and the deviation relatively low at 6.42% (Fig. 4b).
Thus, the model remains robust for spatially overlapping
tuning curves, degrading gracefully at very high overlaps
(eg, 120°; Fig. 4c, top).

Extending the model network to potential
engineering solutions for segregating
spatial sound sources

The network can be extended to provide an engineering
solution to the problem of segregating target from noise in
space for the maximal number of locations on the grid.
Figure 5a demonstrates a network where good discrim-
inability is obtained for all conditions with target location
to the right of masker location. This network, together with
a complementary network with high performance for grid
positions above the diagonal, allows the segregation of
non-colocated sources for any azimuth, while maintaining
consistently high intelligibility when only one source is
present. An alternative engineering solution is demon-
strated in Figure 5b, where one channel acts as a beam-
former by inhibiting all other channels. In this case, similar
networks beaming at other directions will enable a user to
selectively listen to any direction of interest.

Discussion

The network model used here provides an explicit way of
generating neural responses that replicate the key fea-
tures of the cortical neurons recorded by Maddox et al.
(2012), and provides a neural strategy for transforming
information into selective coding for sound sources in the
presence of multiple sources. The network uses informa-
tion from input neurons through individual spatial chan-
nels and matches the key experimental features through
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Figure 5. Engineering solutions. a, Left, “Contralateral-dominance” model network where all channels contralateral to the dominant
channel are inhibited. Right, Simulation results of this structure achieve the maximum number of spatially separable target and masker
locations, where all targets contralateral to masker can be segregated. b, Left, “Beamformer” model network where the channel tuned
to the front (0°) inhibits all other channels. Right, The simulated spatial grid illustrating the segregation of the frontal target source.

convergent excitation and lateral inhibition across spatial
channels.

Predictions and implications

Lateral inhibition

The model suggests that lateral inhibition plays an
important role in spatial sound source segregation.
While lateral inhibition is a widely known mechanism in
the brain, to our knowledge this study is the first to
demonstrate how it can be exploited in the context of
the cocktail party problem. Inhibition is present in field
L, as well as the mammalian primary auditory cortex
(Mller and Scheich, 1988; Wehr and Zador, 2003).
Recently, there has been evidence of suppression by
spatially separated stimuli in the cortex of marmoset
monkeys (Zhou and Wang, 2012, 2014), which could be
a manifestation of the lateral inhibition postulated in the
model.

Given this network, we propose a physiological exper-
iment that may provide additional insights. One can ex-
perimentally test the nature and source of inhibition by
locally blocking GABA receptors and measuring the spa-
tial grid under the same experimental setup. If the re-
corded spatial grid becomes less spatially sensitive, the
proposed lateral inhibitory connections are most likely
local.

Exploring alternate mechanisms for spatial sound
source segregation

The above simulations show that the sharpened spatial
tuning in the presence of multiple sources, which allows
for spatial stream segregation, can be achieved via lateral
inhibition across spatial channels. An alternate mecha-
nism for spatial streaming, proposed in a recent study
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(Middlebrooks and Bremen, 2013) is forward masking.
Candidate neural mechanisms underlying forward mask-
ing are adaptation and synaptic depression. The network
model used here incorporated both of these mechanisms
to model the temporal dynamics of the cortical responses.
Our simulations indicate that although these mechanisms
are important in determining the temporal dynamics of
neural responses, they alone fail to produce the diverse
spatial grids seen in the Maddox et al. (2012) study be-
cause of a lack of cross-channel spatial interactions (Fig.
2a, middle). In particular, without lateral inhibition, the
model does not replicate the hotspots seen in the exper-
imentally observed spatial grid. Thus, lateral inhibition
involving interactions across spatial channels is necessary
in the model for replicating the spatial properties in the
observed data.

Response to multiple maskers

For each recorded unit, looking at its single-masker spa-
tial grid response provides predictions for how it might
respond to multiple maskers. In Figure 2c, for example,
the simulated neuron is robust to maskers presented from
both —90° and 90° (independently) when the target is
located at 0°. This is achieved in the model network by
inhibitory connections from 0° to —90° and 90°, which
means that target stimuli at 0° could mask two simulta-
neous noise sources from —90° and 90°. Consistent with
this intuition, our simulated network for this unit was
robust to simultaneous maskers from —90° and 90°. It
should be possible to test such predictions by perform-
ing two-masker experiments physiologically, and com-
paring the results to those of single-masker cases for
each neuron.
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Potential engineering solution to the cocktail party
problem

The engineering solution visualized in Figure 5b is robust
to simultaneous maskers in all channels other than the
target (in this case 3 simultaneous maskers at —90°, 45°,
and 90°), making this a particularly attractive design op-
tion in the context of hearing assistive devices in the
presence of multiple speakers.

We plan to use the proposed engineering solution net-
works in Figure 5 to segregate mixed-source acoustic
stimuli by building a system that can take mixed-source
acoustic inputs and output a single desired acoustic
source. This will require two additional processing steps.
First, a peripheral model that converts acoustic stimuli
into neural representations consistent with the network
input is needed. This will be a model where neurons
selectively respond to a preferred direction using inter-
aural cues, similar to previous neural models of spatial
tuning (Fischer et al., 2009). Second, the neural network
output, ie, spike trains representing the single desired
source, needs to be converted back into acoustic wave-
forms. This can be done using stimulus reconstruction
(Mesgarani and Chang, 2012). We are working on both
steps with the long-term goal of ultimately testing the
segregation capabilities of the model on normal and
hearing-impaired listeners.

Spatial tuning of inputs and applicability of model to
spatial processing in birds and mammals

For the majority of simulations, input neurons are as-
sumed to have non-overlapping Gaussian spatial tuning
curves centered at azimuths corresponding to those used
in the experiment. A separate set of simulations showed
that the model network remains robust when the spatial
tuning curves are broadened to have significant overlap.

Spatially selective neurons found in the owl midbrain
(Knudsen and Konishi, 1978; Pefia and Konishi, 2001) and
chicken hindbrain (Képpl and Carr, 2008) demonstrate
ITD sensitivity within the physiological range. Although
spatial tuning of midbrain neurons in the zebra finch
remains unknown, it is likely that the auditory periphery
contains similarly spatially sensitive neurons like other
avian species, as spatial tuning appears to follow an
evolutionary divide across species (Schnupp and Carr,
2009; Ashida and Carr, 2011). An outstanding question is
whether the model will hold for species whose midbrain
neurons show broader spatial sensitivity, such as small-
headed mammals where tuning curves span an entire
hemisphere or more (Vonderschen and Wagner, 2014). As
we tested, the selective mechanism remains robust when
spatial tuning is widened up to 40° (Fig. 4), comparable
with some azimuth ITD tuning functions recorded in the
rabbit IC by Day et al., (2012).

In species that show broad spatial tuning in the mid-
brain, spatial tuning may be further sharpened within the
cortical level. One possibility is that broad spatially tuned
precortical inputs are sharpened by a high threshold at
the cortical level. A second possibility is that the spatial
tuning of cortical neurons is sharpened during active en-
gagement in a task (Lee and Middlebrooks, 2011). In this
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case, the authors proposed a top-down activation of
inhibitory mechanisms as a potential mechanism. The
Maddox et al. (2012) experiments were in an anesthetized
preparation, so lacking top-down activation, but it is pos-
sible that sharpening of tuning via lateral inhibition can be
elicited by top-down activation (eg, during active engage-
ment), or bottom-up activation (eg, in the multiple source
condition). A third possibility is that for neurons with broad
spatial tuning, the hypothesized spatially tuned inputs
may be achieved through population coding, ie, compu-
tations based on effective pooling across input neurons.

The neurons in the experiments by Maddox et al. (2012)
were recorded in field L of the zebra finch, the analog of
mammalian primary auditory cortex. Although the strict
homology between auditory areas in birds and mammals
is still debated, the functional properties of Field L neu-
rons, eg, spectrotemporal receptive fields, are similar to
those observed in mammalian auditory cortex (Sen et al.,
2001). In addition, the trend of less spatial specificity for
single sources from primary spatial cue detection areas to
higher cortical areas appears common across mammalian
and bird species (Vonderschen and Wagner, 2014), for
which this study provides a possible explanation. Thus,
the model described here may explain some of the gen-
eral properties of cortical neurons in other systems.

Population coding and readout

The network presented here suggests that in the presence
of multiple sound sources, cortical neurons can “selec-
tively listen” to particular target sources, which corre-
spond to hotspots of performance on the spatial grid. A
population of such neurons, for different locations in
space, would enable spatial streaming over a range of
locations. This is consistent with the diversity of spatial
grids with hot spots at different locations observed in the
experimental data (Maddox et al., 2012). The experimental
data were obtained in anesthetized animals, suggesting
that such a population representation is “pre-attentive”.
Attention may facilitate the proper readout from this cor-
tical population by selecting the appropriate neuron(s) for
given target and masker locations.

Concluding remarks
In this study, we presented a computational model de-
scribing how the auditory cortex may transform spatial
representations to solve a key aspect of the cocktail party
problem. The computational model is based on physio-
logical data (Maddox et al., 2012) and makes two key
predictions that can be tested experimentally. First, the
model predicts that lateral inhibition is a core mechanism
underlying spatial sound source segregation. It would be
interesting to further elucidate the nature and the location
of such inhibition in similar experiments by pharmacolog-
ically blocking local GABA receptors. Second, the model
predicts that some cortical neurons will remain robust
when additional maskers are added in select locations
predicted by the model. This can be tested in experiments
on spatial selectivity of cortical neurons with three or more
sound sources.

In addition to testing these key experimental predic-
tions, it will also be interesting to implement the engineer-

eNeuro.sfn.org



leuro

ing solutions discussed in the paper and test whether
the proposed circuit can successfully segregate sounds
sources and improve listening performance in normal and
hearing impaired listeners in cocktail-party-like settings.
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